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We consider quasi-one-dimensional Ruderman-Kittel-Kasuya-Yosida (RKKY) systems in proximity to

an s-wave superconductor. We show that a 2kF peak in the spin susceptibility of the superconductor in the

one-dimensional limit supports helical order of localized magnetic moments via RKKY interaction, where

kF is the Fermi wave vector. The magnetic helix is equivalent to a uniform magnetic field and very strong

spin-orbit interaction (SOI) with an effective SOI length 1=2kF. We find the conditions to establish such a

magnetic state in atomic chains and semiconducting nanowires with magnetic atoms or nuclear spins.

Generically, these systems are in a topological phase with Majorana fermions. The inherent self-tuning of

the helix to 2kF eliminates the need to tune the chemical potential.
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Introduction.—Majorana fermions (MFs) [1] have
attracted wide attention due to their exotic non-Abelian
statistics and their promise for topological quantum comput-
ing [2,3], also fueled by recent experiments searching for
MFs [4–10]. The crucial ingredient for mostMF proposals is
helical spin textures leading to an exotic p-wave pairing due
to a proximity effect with an ordinary s-wave superconduc-
tor [3,11–14]. The associated helical modes, which transport
opposite spins in opposite directions, are proposed to exist in
various systems [13–21]. Awell-known mechanism respon-
sible for helical modes is spin-orbit interaction (SOI) of
Rashba type [3,11,12]. However, quite often, an external
uniform magnetic field is needed, and the spin polarization
of the helical modes is not ideal but depends on the SOI
strength [15]. While intrinsic values of SOI are limited by
material parameters, the recently proposed synthetic SOI
produced by a helical magnetic field can reach extraordinary
values that are limited only by the spatial period of the
helical field 2�=kn [22]. Such helical fields can be engi-
neered with nanomagnets [20–25] or, more atomistically,
can emerge from helical spin chains due to anisotropic
exchange and Dzyaloshinskii-Moriya interaction [26–29].
The equivalence between spectra of wires with intrinsic and
with synthetic SOI has opened up new platforms for helical
modes and MFs [20–24]. However, in all these setups, the
chemical potential must be tuned inside the gap opened by
the magnetic field so that the Fermi wave vector kF is close
to kn=2. This poses additional challenges on experimental
realizations by requiring wires with a high tunability of the
Fermi level and high mobility down to ultralow densities.

Thus, it is natural to ask if helical modes exist in
low-dimensional superconductors such that the system
automatically tunes itself to kn ¼ 2kF. Surprisingly, the
answer turns out to be affirmative for a rather broad class of
systems. These are RKKY systems that consist of localized

magnetic moments coupled by itinerant electrons via
the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
[30–32]. It was recently discovered that in such systems, in
the quasi-one-dimensional limit, the moments form a spin
helix, leading to a Peierls-like gap at the intrinsic Fermi
level such that 2kF ¼ kn [22,33–35]. However, these
results were obtained for semiconducting or metallic sys-
tems in the normal phase, relying on the presence of
gapless itinerant electrons to transmit the RKKY interac-
tion. Thus, it is not clear that the same ordering mechanism
can also develop in the superconducting regime where the
spectrum of the electrons is gapped. In the present Letter,
we address this issue in detail and demonstrate that the
helical order arising from RKKY interaction also survives
in one-dimensional (1D) superconductors. As a prototype
for our model, we consider atomic chains [26] and semi-
conducting nanowires with magnetic atoms or nuclear
spins placed on top of a bulk s-wave superconductor. We
show that these setups are generically deep inside the
topological phase and host MFs without requiring any
fine-tuning at all.
Model.—We consider a quasi-1D superconducting wire

aligned along the x axis with embedded localized magnetic
moments; see Fig. 1. The quasi-one-dimensionality means

FIG. 1 (color online). Sketch of a one-dimensional system
(yellow cylinder) aligned along the x axis brought into contact
with an s-wave superconductor (green slab). Localized magnetic
moments (arrows inside the cylinder) are ordered into a spin
helix by RKKY interaction transmitted by electrons.
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that only the lowest subband of the wire is occupied [36],
and the wave function in the transverse direction is given
by c ðy; zÞ � c ðr?Þ. (A single subband is not crucial for
what follows [35].) The 1D s-wave superconductor is
described by the Hamiltonian

H ¼
Z

dx½c yH 0ðxÞc þ�sðc "c # þ H:c:Þ�; (1)

where c ðxÞ ¼ ðc "ðxÞ; c #ðxÞÞ with c �ðxÞ being an annihi-

lation operator acting on an electron at position xwith spin�.
The superconducting coupling parameter�s � 0 arises from
the proximity effect. Here, H 0ðxÞ ¼ �@

2@2x=2m��F,

where m is the effective mass and @k̂ ¼ �i@@x the momen-
tum operator. The energy is taken from the Fermi level
�k ¼ @

2ðk2 � k2FÞ=2m, where the Fermi wave vector kF ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�F

p
=@ is set by the chemical potential �F. The quasi-

particle energy in the superconductor is given by

�k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2k þ �2

s

q
.

The interaction between itinerant electron spins and

localized magnetic moments ~Ii at position Ri ¼ ðxi; r?;iÞ
is described by the Hamiltonian density

H intðxÞ ¼ �

2

X
i

~Ii � �jc ðr?;iÞj2�ðx� xiÞ; (2)

with the coupling strength � being a material constant.
Here, � is the vector of Pauli matrices acting in electron
spin space. In the following, we solve the interacting
Hamiltonian H þHint on a mean field level: We first
integrate out the superconducting condensate in leading
order � to derive an effective RKKY interaction for the
subsystem of localized moments. We find its ground state
and quantify conditions under which it is stable. Assuming
these conditions are fulfilled, we derive an effective
Hamiltonian for the electron subsystem.

RKKY in a 1D superconductor.—The localized moments
spin-polarize the conducting medium, which influences
other moments and results in the RKKY interaction. We
now introduce an effective 1D model of magnetic
moments, with a notation suitable for magnetically doped
semiconductor wires, and extend it later to other realiza-
tions. We approximate the transverse wave function profile
jc ðr?Þj2 by a constant, the inverse of the cross section area
A. We assume there are N? localized moments on a
transverse plane. Although N? might be large, once the
magnetic order is established, these spins are collinear,
since the spin excitations within the locked transverse
plane are energetically much more costly than excitations
we will consider below and can therefore be neglected
[33]. Thus, a transverse plane is assigned a single (effec-
tive) spin of length I ¼ N?~I. Neighboring planes are sepa-
rated by a distance of the order of the lattice constant a, and
the density of moments is parametrized as N? ¼ �	0Aa,
with � being the fraction of cations replaced by magnetic

atoms and 	0 ¼ 4=a3 the cation density in zinc-blende
materials.
With these definitions, the RKKY interaction between

localized moments becomes

HRKKY ¼ �X
i;j

JijIi � Ij; (3)

where the long range coupling Jij ¼ �ð2�2=A2Þ
ðxi � xjÞ
is given by the static spin susceptibility 
 of the
1D superconductor. In Fourier space, 
q ¼ ð1=aÞ�R
dx expðiqxÞ
ðxÞ, the susceptibility at zero temperature

is given by [38]


q ¼ � 1

4aL

X
k

�k�kþq � �k�kþq � �2
s

�k�kþq

1

�k þ �kþq

: (4)

Here, L ¼ Na is the system length. The finite temperature
corrections to 
, being exponentially small if �s � kBT,
are neglected. For a plot of 
q, see Fig. 2.

Although 
q¼0 ¼ 0 and thus the total magnetization is

strictly zero [39], the superconductor responds at nonzero
momenta q. If�s � �F, the susceptibility develops a peak
at q ¼ 2kF, which gets more pronounced as the ratio
�s=�F drops. Examining the limiting cases analytically,
we suggest the following interpolation formula:


q 	 � kF
8�a�F

ln

0
@ e1=2þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

s=�
2
F þ ð1� q=2kFÞ2=2

q
1
A; (5)

in the regime of �s & �F and jq� 2kFj 
 kF. Here,
� 	 0:58 is the Euler gamma constant. Comparing to
numerics, we find that it is an excellent approximation
for the peak height at q ¼ 2kF, while away from this
point it differs from the exact result by a broad
nonresonant background only (see the insets of Fig. 2).
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FIG. 2 (color online). One-dimensional superconductor sus-
ceptibility divided by kF=8�a�F. Main: Susceptibility given
in Eq. (4) for �s=�F ¼ 2, 1, 0.1, and 0.01, respectively (curves
from the bottom up). Insets: Comparison of exact [symbols;
Eq. (4)] and interpolation [solid line; Eq. (5)] values. Left: at
q ¼ 2kF. Right: for �s=�F ¼ 0:01 (circles) and 0.001 (squares).
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The susceptibility peak, coming from the Fermi edge
singularity, is known from normal systems. A priori, it
is not obvious that a gapped system remains effective in
mediating the RKKY exchange due to the cutoff intro-
duced by the coherence length. Here, this is so, since the
coupling range that is relevant is given by the Fermi
wavelength, assumed to be much smaller than the coher-
ence length, �s=�F 
 1.

Magnons.—The classical ground state of Eq. (3) with J
peaked at finite momentum is a helically ordered pattern
Ii ¼ Rh;2kFxi½I �, with R a 3� 3 matrix corresponding to

a vector rotation around the helical axis h with angle
2kFxi, and I � I1 ? h is the spin at the wire end (see
the Supplemental Material [40]). We find the excitations
of the corresponding quantum system (magnons) by the
Holstein-Primakoff representation of the effective spins by
bosons [41]. Magnons, labeled by momentum k, have
energies

@!k ¼
~Iffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Jjj2kF � Jjj2kFþk � Jjj2kF�kÞðJjj2kF � J?k Þ

q
; (6)

where we introduced the upper index on the tensor J for its
value in the helical plane ( k ) and in a direction perpen-
dicular to it ( ? ). We consider first the isotropic case

Jkq ¼ J?q . The spectrum is gapless, as the two terms under

the square root in Eq. (6) become zero at k ¼ 0 and
k ¼ 2kF, respectively. Close to these values, the dispersion
is linear in k, as the function J has a maximum at 2kF. The
helical order critical temperature follows as (for details,
see the Supplemental Material [40])

kBTc � I2J2kF ¼ �hHRKKYi=N � Eh; (7)

so that it is given by the RKKY energy scale with the
expectation value taken in the helical ground state. The
critical length turns out to be extremely long and of
no concern [40].

Realizations.—Next, we discuss three realizations of
our system: magnetically doped semiconductor nanowire,
such as GaMnAs; clean III-V semiconductor nanowire
with high nuclear spin isotopes, such as InAs; and a chain
of magnetic atoms on a superconductor surface, such as
Fe on Nb. The parameters and resulting scales are sum-
marized in Table I. We include the effective field �m ¼
��	0

~I=2 the electrons feel once the order is established,
and Bc ¼ minfEh=�S;�m=ge�Bg gives a rough estimate
of the critical field Bc destroying the helical order.

For a semiconductor nanowire with a moderate doping
of 2%, we obtain a critical temperature of several kelvins
and stability with respect to magnetic fields of order 1 T.
Such nanowires can be grown very clean, with mean free
paths of order microns if undoped, and are tunable by
gates. Magnetic dopants will unavoidably induce some
disorder. This problem is absent in the case of an undoped
wire with nuclear spins, although there, the critical tem-
perature becomes very small, 7 mK, because of the weak

hyperfine interaction. We still include this realization for
comparison, as establishing helical order in a nuclear wire
was considered for electrons in a Luttinger liquid regime
[33,34]. Like there, we expect interactions (neglected
here) to enhance Tc by a factor of 2 to 4. We took InAs
as the nuclear wire material and, to simplify notation in
Table I, we neglected the contribution of As nuclei; thus,
� ¼ 1.
An exciting possibility is offered by magnetic monoa-

tomic chains, which can be fabricated on metal [26] or
superconducting surfaces using either growth or atomic
manipulation techniques with the STM [28,42]. For the
latter system, the formulas we give are valid upon putting
N? ¼ 1, � ¼ 1, and A ¼ a2, with a being the interatomic
distance. As an estimate, we take �=a3 ¼ 6 meV and a
hopping matrix element t ¼ 10 meV [26,28,42]. The
stability of the helical order is rather high, comparable
to the stability of the underlying superconductor, so that
possible differences in these parameters are not relevant
for us. What is important here is that the atomistic
exchange and possible spin-orbit-based Dzyaloshinskii-
Moriya interaction should be negligible for the RKKY-
induced magnetism. Under these conditions, the magnetic
helix pinned to the Fermi level is to be expected.
Majorana fermions without tuning.—From now on, we

consider a helical order of localized magnetic moments to

be established. These moments ~Ii are aligned along the
polarization vector nðxÞ ¼ cosð2kFxÞx̂þ sinð2kFxÞŷ that
is perpendicular to the helix axis h � ẑ. Such an ordered
state acts back on the electrons via H intðxÞ [see Eq. (2)]
that takes the form of an effective Zeeman term

TABLE I. Chosen parameter values: material, lattice constant
a, electron g factor ge, magnetic moment �S ¼ ~Igs�, exchange
coupling �, moment doping �, Fermi energy �F, superconduct-
ing gap �s, and the resulting scales: critical temperature Tc,
critical field Bc, effective helical field strength �m, and MF
localization length � for different realizations: the magnetic
atom chain, magnetically doped nanowire, and nanowire with
nuclear spins. The effective mass for GaMnAs (InAs) is
m ¼ 0:067me (0:027me).

Chain Magnetic wire Nuclear wire

Material Fe GaMnAs InAs

a 0.3 nm 0.565 nm 0.605 nm

ge 2 �0:44 �8
~Igs� 2� 2�B 5=2� 2�B 9=2� 1:2�N

� 1:6 meVnm3 9 meVnm3 4:7 �eV nm3

� 1 0.02 1

�F 10 meV 20 meV 1 meV

�s 1 meV 0.5 meV 0.1 meV

Tc 14 K 2 K 7.4 mK

Bc 5 T 0.7 T 0.4 T

�m 6 meV 5 meV 0.2 meV

� 4 nm 0:4 �m 0:5 �m
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H m ¼ �mnðxÞ � �; (8)

where �m ¼ ��	0
~I=2 is the strength of the helical field

assumed to be positive from now on.
The energy spectrum of a system described byH þH m

can be easily found by rewriting all electron operators in
terms of slow-varying right (R�) and left (L�) movers:
c �ðxÞ ¼ R�ðxÞeikFx þ L�ðxÞe�ikFx [43]. The helical field
with a pitch �=kF results in a resonant scattering between
R# and L" [22–24,33]; see Fig. 3(a) [44]. Taking this reso-

nance into account, we arrive at the effective Hamiltonian
~H ¼ 1

2

R
dx
yðxÞ ~H
ðxÞ with the Hamiltonian density

~H ¼ �i@�F�3@x þ �m

2
�3ð�1�1 þ �2�2Þ þ �s�2�2�1;

(9)

where the Pauli matrix �i (�i) acts in left-right mover

(electron-hole) space, and 
 ¼ ðR"; L"; R#; L#; R
y
" ; L

y
" ;

Ry
# ; L

y
# Þ. The Fermi velocity is given by @�F¼ð@�k=

@kÞjk¼kF . The diagonalization of ~H gives us the bulk

spectrum

Eð1Þ
� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@�FkÞ2 þ�2

s

q
; (10)

Eð2;�Þ
� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@�FkÞ2 þ ð�m � �sÞ2

q
: (11)

Here, Eð1Þ
� is twofold degenerate, and k is the momentum

eigenvalue defined close to the Fermi points �kF. The
Hamiltonian H belongs to the topological class BDI
[45], so the system can potentially host MFs. The
transition between a topological phase (with MFs) and a
trivial phase (no MFs) is related to the closing and
reopening of an energy gap. In our case, the system

is gapless if �m ¼ �s; see Eq. (11) for Eð2;�Þ
� .

Straightforward calculations [23,43] lead us to the topo-
logical criterion �m >�s. If it is satisfied, the system is
in the topological phase. We note that for all three real-
izations considered above �m � �s (see Table I), thus,

the system is automatically deeply in the topological
phase without any need for parameter tuning.
The MF localization length � is determined by the

smallest gap in the system � ¼ @�F=�s. If the distance L
between MFs localized at opposite ends of the wire is
smaller than �, these two MFs combine into an ordinary
fermion of nonzero energy [46]. The numerical values for
� listed in Table I are well below a micrometer. In addition,
the coupling between MFs can take place via the bulk
superconductor [47]. However, this channel is also effi-
ciently suppressed in long wires.
We have tested our model numerically. As expected,

the presence of MFs in the topological phase is stable
against fluctuations of hopping parameters, the supercon-
ductivity strength, and the local chemical potential. We
believe that disorder effects, which challenge an observa-
tion and identification of MFs [46,48–53], can be effi-
ciently suppressed in our setup. Unlike Rashba nanowires,
where the charge density is limited by the (usually weak)
Rashba SOI, we can work at much higher densities,
benefiting from charge impurities being screened.
However, if �F is increased, the critical temperature Tc

goes slowly down [as 1=kF; see Eq. (7)]. For an atom
chain, which can be charged by gates, this is irrelevant, as
Tc is very high to begin with. For a semiconducting
nanowire, the decrease of Tc can be prevented by increas-
ing magnetic doping.
Conclusions.—We have introduced a new class of super-

conducting systems based on RKKY interactions which
feature magnetic helices with a pitch given by half of the
Fermi wavelength in the quasi-one-dimensional limit. As a
result, the superconductor becomes topological and hosts
MFs without the need to tune the chemical potential. We
have proposed candidate systems such as chains of mag-
netic atoms and semiconducting nanowires with nuclear
spins or magnetic dopants.
We acknowledge support by the SNF, NCCR QSIT,

APVV Contract No. COQI-APVV-0646-10, the U.S.
National Science Foundation Grant No. NSF-
DMR1104612, and the U.S. ARO.

(a) (b)

FIG. 3 (color online). (a) Electron (solid lines) and hole (dashed lines) energy spectrum around the Fermi points�kF of a wire in the
presence of a helical magnetic field described byH 0 þH m. The inset shows the entire spectrum ofH 0 with�F being counted from
the band bottom. The interaction termH m leads to a resonant scattering between right movers with spin-down R# and left movers with

spin-up L" and results in a partial gap 2�m in the spectrum [22–24,33]. Away from the Fermi points, spin-up (blue lines) and spin-down

(red lines) states stay degenerate. (b) The superconducting pairing term of strength �s, which couples electron-hole states with
opposite spins and momenta, gaps all branches of the spectrum [see Eqs. (10) and (11)] except for the special case �s ¼ �m, which
marks the transition between trivial and topological phases.
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