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We construct continuum models of 3D and 4D topological insulators by coupling spin- 12 fermions to an

SU(2) background gauge field, which is equivalent to a spatially dependent spin-orbit coupling. Higher

dimensional generalizations of flat Landau levels are obtained in the Landau-like gauge. The 2D helical

Dirac modes with opposite helicities and 3D Weyl modes with opposite chiralities are spatially separated

along the third and fourth dimensions, respectively. Stable 2D helical Fermi surfaces and 3D chiral Fermi

surfaces appear on open boundaries, respectively. The charge pumping in 4D Landau level systems shows

quantized 4D quantum Hall effect.
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Time-reversal (TR) invariant topological insulators (TIs)
have become a major research focus in condensed matter
physics [1–3]. Different from the 2D quantum Hall (QH)
and quantum anomalous Hall systems which are topologi-
cally characterized by the first Chern number [4–8], time-
reversal invariant TIs are characterized by the second
Chern number in 4D [9,10] and the Z2 index in 2D and
3D [10–16]. Various 2D and 3D TIs are predicted theoreti-
cally and identified experimentally exhibiting stable gap-
less 1D helical edge and 2D surface modes against TR
invariant perturbations [13,17–21]. Topological states have
also been extended to systems with particle-hole symmetry
and superconductors [22–24].

Most current studies of 2D and 3D TIs focus on Bloch-
wave bands in lattice systems. The nontrivial band topol-
ogy arises from spin-orbit (SO) coupling induced band
inversions [13]. However, Landau levels (LL) are essential
in the study of QH effects because their elegant analytical
properties enable construction of fractional states.
Generalizing LLs to high dimensions gives rise to TIs
with explicit wave functions in the continuum, which
would facilitate the study of the exotic fractional TIs.
Efforts along this line were pioneered by Zhang and Hu
[9]. They constructed LLs on the compact S4 sphere by
coupling fermions with the SU(2) monopole gauge poten-
tial, and various further developments appeared [25–29].
Two dimensional TIs based on TR invariant LLs have also
been investigated [12]. Two of the authors generalized LLs
of Schrödinger fermions to high-dimensional flat space
[30] by combining the isotropic harmonic potential and
SO coupling. LLs have also been generalized to high
dimensional Dirac fermions and parity-breaking systems
[31,32].

In all the above works, angular momentum is explicitly
conserved; thus, they can be considered as LLs in the
symmetriclike gauge. In 2D, LL wave functions in the
Landau gauge are particularly intuitive: they are 1D chiral

plane wave modes spatially separated along the transverse
direction. The QH effect is just the 1D chiral anomaly in
which the chiral current generated by the electric field
becomes the transverse charge current. In this Letter, we
develop high dimensional LLs with flat spectra as spatially
separated helical Dirac or chiral Weyl fermion modes, i.e.,
the SU(2) Landau-like gauge. They are 3D and 4D TIs
defined in the continuum possessing stable gapless bound-
ary modes. To our knowledge, these are the simplest TI
Hamiltonians constructed so far. Recently, there have been
considerable interests of 2D topological band structures
with approximate flat spectra [33–35]. Our Hamiltonians
defined in the continuum possess exact flat energy spectra
in 3D and 4D, and are independent of the band inversion
mechanism. For the 4D case, they exhibit the 4D quantum
Hall effect [9,10], which is a quantized nonlinear electro-
magnetic response related to the spatially separated
ð3þ 1ÞD chiral anomaly. Our methods can be easily gen-
eralized to arbitrary dimensions and also to Dirac fermions.
The 3D case.—We begin with the 3D TR invariant LL

Hamiltonian for a spin- 1
2 fermion as

H3D
LL ¼ ~p2

2m
þ 1

2
m!2

soz
2 �!sozðpx�y � py�xÞ; (1)

which couples the 1D harmonic potential in the z direction
and the 2D Rashba SO coupling through a z-dependent SO
coupling strength.H3D

LL possess translation symmetry in the
xy plane, TR and parity symmetries. Equation (1) can be
reformulated in the form of an SU(2) background gauge

potential as H3D
LL ¼ ð1=2mÞð ~p� e

c
~AÞ2 � 1

2m!2
soz

2, where

!so ¼ jeGj=mc, and ~A takes the Landau-like gauge as
Ax ¼ G�yz, Ay ¼ �G�xz, and Az ¼ 0. In Ref. [30], a

symmetriclike gauge with ~A0 ¼ G ~�� ~r is used, which
explicitly preserves the 3D rotational symmetry.

However, the SU(2) vector potentials ~A0
and ~A are not

gauge equivalent. As shown below, the physical quantities

PRL 111, 186803 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

1 NOVEMBER 2013

0031-9007=13=111(18)=186803(5) 186803-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.111.186803


of Eq. (1), such as density of states, are not 3D rotationally
symmetric. Nevertheless, we will see below that these two
Hamiltonians give rise to the same forms of helical Dirac
surface modes, and thus they belong to the same topologi-
cal class. A related Hamiltonian is also employed for
studying electromagnetic properties in superconductors
with cylindrical geometry [36].

Equation (1) can be decomposed into a set of 1D
harmonic oscillators along the z axis exhibiting flat
spectra, a key feature of LLs. We define a characteristic

SO length scale lso ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ðm!soÞ

p
. Each of the reduced

1D harmonic oscillator Hamiltonian is associated with a

2D helical plane wave state as Hzð ~k2DÞ ¼ ðp2
z=2mÞ þ

1
2m!2

so½z� l2sok2D�̂2Dðk̂2DÞ�2, where k2D ¼ ðk2x þ k2yÞ1=2
and ~k2D ¼ ðkx; kyÞ; the helicity operator is defined as

�̂2Dðk̂2DÞ ¼ k̂x�y � k̂y�x. The n-th LL eigenstates are

solved as

�n; ~k2D;�
ð ~rÞ ¼ ei

~k2D� ~r2D�n½z� z0ðk2D;�Þ� � ��ðk̂2DÞ; (2)

where ~r2D ¼ ðx; yÞ; ��ðk̂2DÞ are eigenstates of the helicity
satisfying �̂��ðk̂2DÞ ¼ ���ðk̂2DÞ with helicity eigenval-
ues � ¼ �1; �n½z� z0� are the eigenstates of the n-th
harmonic levels with the central positions located at z0, and
z0ðk2D;�Þ ¼ �l2sok2D. The energy spectra of the n-th LL is

En ¼ ðnþ 1
2Þ@!so, independent of ~k2D and �.

In the 2D LL case, spatial coordinates x and y are non-
commutative if projected to a given LL, say, the lowest LL
(LLL). The LLL wave functions in the Landau gauge are
1D plane waves along the x direction whose central y
positions linearly depend on kx as y0 ¼ l2Bkx. These 1D
modes with opposite chiralities are spatially separated
along the y direction. Consequently, the xy plane can be
viewed as the 2D phase space of a 1D system, in which y
plays the role of kx. The momentum cutoff of the bulk
states is determined by the system size along the y direc-
tion as jkxj< ðLy=ð2l2BÞÞ. Right and left moving edge

modes appear along the upper and lower boundaries per-
pendicular to the y axis, respectively. These chiral edge
modes cannot exist in purely 1D systems such as quantum
wires.

Similarly, the 3D LL wave functions in Eq. (2) are spa-
tially separated 2D helical plane waves along the z axis. As
shown in Fig. 1(a), for states with opposite helicity eigen-
values, their central positions are shifted in opposite direc-
tions. Let us perform the LLL projection. Among the LLL

states with good quantum numbers ( ~k2D,�), it easy to check

the following matrix elements h�0; ~k2D;�
jzj�0; ~k02D;�0 i ¼

�ð ~k2D; ~k02DÞ��;�0z0ðk2D;�Þ. Therefore, we have

h�a
0jzj�b

0i ¼ h�a
0jðl2so=@Þðpx�y � py�xÞj�b

0i, where �a;b
0

are arbitrary linear superpositions of �0; ~k2D;�
in the LLL.

This proves that

PzP ¼ l2so
@
ðpx�y � py�xÞ; (3)

whereP is the LLL projection operator. Since the LLL states
span the complete basis for the plane waves in the xy plane,
the projections of x and y in the LLL remain themselves. As
a result, we obtain the following commutation relations after
the LLL projection as

½x;z�LLL¼ il2so�y;½y;z�LLL¼�il2so�x;½x;y�LLL¼0: (4)

Interestingly, the 3D LL states can be viewed as states in
the 4D phase space of a 2D system (with x and y coor-
dinates) augmented by the helicity structure, in which jzj
plays the role of the magnitude of the 2D momentum and
the sign of z corresponds to � ¼ �1. In fact, the momen-
tum cutoff of the bulk states is exactly determined by the
spatial size Lz along the z direction as

k2D < kB2D � Lz

2l2so
; (5)

in which �ðLz=2Þ< z < ðLz=2Þ. Applying the open
boundary condition along the z direction and periodic
boundary conditions in the x and y directions with spatial
sizes Lx and Ly, respectively, we can easily count the total

number of states to be N ¼ LxLyL
2
z=ð8�l4soÞ. The L2

z

dependence of N may seem puzzling for a 3D system,
but expressing Lz in terms of Eq. (5), we find N ¼
ð1=2�ÞLxLyðkB2DÞ2, which is the conventional state count-

ing of a 2D system expressed in terms of the 4D phase
space volume. It means that an effectively 4D density of
states are squeezed into a 3D real space.
The topological property of this 3D LL systemmanifests

through its helical surface spectra. Let us consider the
upper boundary located at z ¼ zB for H3D

LL. For simplicity,
we only consider the LLL as an example. If zB > 0, the
positive helicity states �0; ~k2D;�¼1 with k2D > kB2D ¼ zBl

�2
so

FIG. 1 (color online). 3D and 4D LLs for H3D
LL and H4D

LL as
spatially separated 2D helical SO plane wave modes localized
along the z axis (a), and 3D Weyl modes localized along the u

axis (b), respectively. Their central locations are z0ð ~k2D;�Þ ¼
�l2sok2D and u0ð ~k3D;�Þ ¼ �l2sok3D, respectively. Note that 2D
Dirac modes with opposite helicities and the 3D ones with
opposite chiralities are located at opposite sides of z ¼ 0 and
u ¼ 0 planes, respectively.
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are confined at the boundary. The 1D harmonic potential

associated with ~k2D and � ¼ 1 is truncated at z ¼ zB, and
thus, the surface spectra acquire dispersion. If we neglect
the zero-point energy, the surface mode dispersion is
approximated by 1

2m!2
soðk� kB2DÞ2l4so with k > kB2D. If the

chemical potential� lies above the LLL, it cuts the spectra
at surface states with a Fermi wave vector kf > kB2D. The

Fermi velocity is vf � mðkf � kB2DÞ!2
sol

4
so. The surface

Hamiltonian is approximated as Hsf�vfð ~p� ~�Þ�ẑ��

with an electronlike Fermi surface with � ¼ 1. In another
case, if the upper boundary is located at zB < 0, then the
negative helicity states�0; ~k2D;�¼�1 with k2D < kB2D, and all

the positive helicity states are pushed to the boundary as
surface modes. Depending on the value of�, we can have a
holelike Fermi surface with � ¼ �1, a Dirac Fermi point,
or an electronlike Fermi surface with� ¼ 1. Similarly, any
other LL gives rise to a branch of gapless helical surface
modes, and each filled bulk LL contributes one helical
Fermi surface. For the lower boundary, the analysis is
parallel to the above. Each filled LL gives rise to an
electronlike helical Fermi surface with � ¼ �1, or hole-
like with � ¼ 1. According to the standard Z2 classifica-
tion, this system is topologically nontrivial if the Fermi
energy cuts an odd number of Landau levels. So far, we
have assumed the harmonic frequency and SO coupling
frequency to be equal in Eq. (1). As explained in the
Supplemental Material [37], although the equality of these
two frequencies is essential for the spectra flatness, the Z2

topology does not require this equality.
The 4D case.—The above procedure can be straightfor-

wardly generalized to any higher dimension. For example,
the 4D LL Hamiltonian is denoted as

H4D
LL ¼ p2

u

2m
þ 1

2
m!2u2 þ ~p2

3D

2m
�!u ~p3D � ~�; (6)

where u and pu refer to the coordinate and momentum of
the 4th dimension, respectively, and ~p3D is the 3 momen-
tum in the xyz space. Equation (6) can be represented as
H4D

LL ¼ ð1=2mÞP4
i¼1ðpi � ðe=cÞAiÞ2 �m!2u2, where the

SU(2) vector potential takes the Landau-like gauge with
Ai ¼ G�iu for i ¼ x, y, z and Au ¼ 0. Equation (6) pre-
serves the translational and rotational symmetries in the
xyz space and TR symmetry. Similar to the 3D case, the
4D LL spectra and wave functions are solved by reducing
Eq. (6) into a set of 1D harmonic oscillators along

the u axis as Huð ~k3DÞ ¼ ðp2
u=2mÞ þ 1

2m!2ðu�
l2sok3D�̂3DÞ2, where k3D ¼ ðk2x þ k2y þ k2zÞ1=2 and �̂3D ¼
k̂3D � ~�. The LL wave functions are

�n; ~k3D;�
ð ~r; uÞ ¼ ei

~k3D� ~r�n½u� u0ðk3D;�Þ� � ��ð ~k3DÞ; (7)

where the central positions u0ðk3D;�Þ ¼ �l2sok3D; �� are

eigenstates of 3D helicity �̂3D with eigenvalues � ¼ �1.

Inside each LL, the spectra are flat with respect to ~k3D and
�. This realizes the spatial separation of the 3D Weyl
fermion modes as shown in Fig. 1(b). Similarly to the 3D
case, after the LLL projection, we have the relation PuP ¼
ð ~p � ~�Þl2so=@, and then the noncommutative relations
among coordinates are

½ri; u�LLL ¼ il2so�i; ½ri; rj�LLL ¼ 0; (8)

for i ¼ x, y, z. The 4DLLs can be viewed as states of the 6D
phase space of a 3D system: increasing the width along
the u direction corresponds to increasing the bulk momen-
tum cutoff k3D < kB3D � Lu=ð2l2soÞ. If the LLL is fully

filled, the total number of states is given by N ¼
LxLyLzL

3
u=ð24�2l6soÞ. Reexpressing Lu ¼ 2kB3Dl

2
so, we

find N ¼ ð1=3�2ÞLxLyLzðkB3DÞ3, which is the conven-

tional state counting of a 3D system expressed in terms of
the 6D phase space volume. With an open boundary
imposed along the u direction, 3D helical Weyl fermion
modes appear on the boundary. Now let us consider the
generalized 4D quantum Hall effects [10] as the nonlinear
electromagnetic response of ð4þ 1ÞD LL system to the

external electric and magnetic (EM) fields, with ~E k ~B in
the xyz space.Without loss of generality, we choose the EM

fields as ~E ¼ Eẑ and ~B ¼ Bẑ, which are minimally coupled
to the spin-1=2 fermion,

H4D
LLðE; BÞ ¼ � @

2

2m
r2

u þ 1

2
m!2ðuþ il2so ~D � ~�Þ2; (9)

where ~D ¼ ~r� iðe=@cÞ ~Aem. Here, ~Aem is the Uð1Þ mag-
netic vector potential in the Landau gauge with Aem;x ¼ 0,

Aem;y ¼ Bx, andAem;z ¼ �cEt. We define lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@c=ðeBÞp

,

where eB > 0 is assumed.

The ~B field further reorganizes the chiral plane wave
states inside the n-th 4D LL into a series of 2D magnetic
LLs in the xy plane. For the moment, let us set Ez ¼ 0. The
eigenvalues En ¼ ðnþ 1

2Þ@!so remain the same as before

without splitting, while the eigen-wave-functions are
changed. We introduce a magnetic LL index m in the xy
plane. For the case ofm ¼ 0, the eigen-wave-functions are
spin polarized as

�n;m¼0ðky; kzÞ ¼ eikyyþikzz�n½u� u0ðkz; m ¼ 0Þ�
� �m¼0½x� x0ðkyÞ�; (10)

where x0 ¼ l2Bky and �0 ¼ ½�0ðx� x0Þ; 0�T is the zero

mode channel of the operator�i ~D � ~� with the eigenvalue
of �0 ¼ kz. The central positions of the u-direction har-
monic oscillators are u0ðkz; m ¼ 0Þ ¼ l2sokz. For m 	 1,

the eigenmodes of �i ~D � ~� come in pairs as

�m;�½x� x0ðkyÞ� ¼
�m;��mðx� x0Þ
	m�m�1ðx� x0Þ

" #
; (11)
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where coefficients �m;� ¼ lBkz �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2Bk

2
z þ 2m

q
, 	m ¼

�i
ffiffiffiffiffiffiffi
2m

p
, and the eigenvalues are �m;� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ 2ml�2

B

q
.

The corresponding eigen-wave-functions are�n;m;�ðky;kzÞ¼
eikyyþikzz�n½u�u0ðkz;m;�Þ��m;�½x�x0ðkyÞ�, where the

central positions u0ðkz; m;�Þ ¼ �l2so

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ 2ml�2

B

q
.

For the solutions of Eq. (10) with the same 4D LL index
n, the 2D magnetic LLs with index m ¼ 0 are singled out.
The central positions of states in this branch are linear with
kz, and thus run across the entire u axis, while those of
other branches withm 	 1 only lie in one half of the space
as shown in Fig. 2. After turning on Ez, kz is accelerated
with time as kzðtÞ ¼ kzð0Þ þ eEzt=@, and thus, the central
positions u0ðm ¼ 0; kzÞ moves along the u axis. Only the
m ¼ 0 branch of the magnetic LL states contribute to the
charge pumping which results in an electric current
along the u direction. Within the time interval �t, the
number of states with each filled 4D LL passing a
cross section perpendicular to the u axis is N ¼
ðLxLy=ð2�l2BÞÞðeE�tLz=ð2�ÞÞ, which results in the elec-

tric current density ðe=ðLxLyLzÞÞðdN=dtÞ. If the number of

fully filled 4D LLs is nocc, the total current density along
the u axis is

ju ¼ nocc�
e

4�2
@

~E � ~B; (12)

where � ¼ e2=ð@cÞ is the fine-structure constant. This
quantized nonlinear electromagnetic response is in agree-
ment with results from the effective theory [10] as the 4D
generalization of the QH effect. If we impose open bound-
ary conditions perpendicular to the u direction, the above
charge pump process corresponds to the chiral anomalies
of Weyl fermions with opposite chiralities on the two 3D
boundaries, respectively. Since they are spatially sepa-
rated, the chiral current corresponds to the electric current
along the u direction.

Although the density of states of our 4D LL systems is
different from the 4D TIs in the lattice system with transla-
tional symmetry [10], their electromagnetic responses obey
the same Eq. (12). It is because that only the spin-polarized
m ¼ 0 branch of LLs,�n;m¼0ðky; kzÞ, is responsible for the
charge pumping. For this branch, Bz field quantizes the
motion in the xy plane so that the x and u coordinates
play the role of ky and kz, respectively. Consequently, the

systemcan beviewed as the 4Dphase space of coordinates y
and z, and scales uniformly as LxLyLzLu with the conven-

tional thermodynamic limit of a 4D system.
The 3D LL Hamiltonian Eq. (1) can be realized in

strained semiconductors by generalizing the method in
Ref. [13] from 2D to 3D. For semiconductors with the
zinc-blende structure, the t2g components of the strain

tensor generate SO coupling as

Hstn ¼ ��f
xyðpx�y � py�xÞ þ 
yzðpy�z � pz�yÞ
þ 
zxðpz�x � px�zÞg; (13)

where � ¼ 4� 105 m=s and 9� 105 m=s for GaAs and
InSb, respectively [38]. The z-dependent Rashba SO cou-
pling is induced by the strain component 
xy, which can be

generated by applying the pressure along the [110] direc-
tion without inducing 
yz and 
zx [13,39]. Furthermore, if

the pressure linearly varies along the z axis, such that

xy ¼ gz where g is the strain gradient, then we arrive at

the SO coupling in Eq. (1) with the relation !so ¼ g�. A
strain gradient of 1% over the length of 1 �m leads to
the LL gap @! ¼ 2:6 �eV in GaAs. It corresponds to the
temperature of 30 mK, which is accessible within the
current low temperature technique. The strain gradient at
a similar order has been achieved experimentally [13,40].
The harmonic potential in Eq. (1) is equivalent to a stan-
dard parabolic quantum well along the z axis [41], which is
constructed by an alternating growth of GaAs and
AlxGa1�xAs layers. The harmonic frequency can be con-
trolled by varying the thickness of different layers.
In conclusion, we have generalized LLs to 3D and 4D in

the Landau-like gauge by coupling spatially dependent SO
couplings with harmonic potentials. This method can be
generalized to arbitrary dimensions by replacing the Pauli-
matrices with the � matrices in corresponding dimensions.
These high dimensional LLs exhibit spatial separation
of helical or chiral fermion modes with opposite helicities,
which give rises to gapless helical or chiral boundary
modes. The 4D LLs give rise to the quantized nonlinear
electromagnetic responses as a spatially separated ð3þ1ÞD
chiral anomaly. Many interesting open problems are left
for future studies. For example, in the Supplemental
Material [37], we present a preliminary effort on construct-
ing of Laughlin wave functions in 4D LLs with spin
polarizations. The generalizations of LLs to 3D and 4D
Dirac fermions are also given there. A full study of the
interaction effects on the high dimensional fractional

FIG. 2 (color online). The central positions u0ðm; kz; �Þ of the
4D LLs in the presence of the magnetic field ~B ¼ Bẑ. Only
the branch of m ¼ 0 [shown by the red (solid) line] runs across
the entire u axis, which gives rise to quantized charge transport
along u axis in the presence of ~E k ~B as indicated in Eq. (12).
This plot takes parameters lso ¼ lB.
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topological states based on LLs will be investigated in
future publications.
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