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We present predictions on the equilibrium behavior of solutions of living polymers confined in a gap
between surfaces, including the ensuing potential of mean force between those surfaces (the disjoining
potential). We highlight the occurrence of a transition upon narrowing the gap, which arises from a
cooperative simultaneous increase of the local density and degree of polymerization. At this transition,
many properties of the confined solution, including the disjoining potential, change by orders of
magnitude over a minute change of the surface separation. These results were obtained owing to two
extensions to a previously introduced self-consistent field—propagator formalism. (i) We derive this
formalism from a free-energy functional of the distribution of chain lengths and configurations. This
enables evaluation of thermodynamic properties, including the disjoining potential. (ii) We solved for a
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system confined between two surfaces.
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Chains of monomers connected by reversible interactions
of ~10 kT are known as living polymers [1,2]. In living
polymers, bonds are formed and broken continuously, and
the chain-length distribution adapts to conditions. The equi-
librium chain-length distribution in a homogeneous solu-
tion follows a simple exponential law with the mean chain
length governed by the binding constant and the monomer
concentration [3]. Some classical examples of living poly-
mers are actin [4], and liquid sulfur [5]. Also wormlike
micelles [6,7] usually behave as living polymers. The
boom of supramolecular chemistry of the last decade
produced many novel living polymers (often called supra-
molecular polymers or dynamic polymers) [1,2,8,9] and
incited a renewed interest in the collective physical proper-
ties of this interesting class of soft matter [10—12].

As with “ordinary” polymers [13], in which bonds
between the units are covalent and of an effectively per-
manent nature, the presence of a small amount of living
polymer in a complex (e.g., colloidal) fluid may have a
pronounced influence on the behavior of the fluid as a
whole [14]. Hence, living polymers can be applied to
tune such behavior. This relevance for complex soft-matter
systems motivated the present study on living-polymer
solutions confined between two surfaces. Confining sur-
faces have a profound influence upon the local structure
of the solution [15], and conversely, the presence of the
living polymers contributes to the interaction potential of
mean force between the surfaces (often called ““disjoining
potential”’) [16]. Such interactions between surfaces are
crucial for the behavior of colloidal systems, as the inter-
actions between colloidal particles are essentially the
interactions between their surfaces [17]. For distances
that are considerably smaller than the radii of curvature
of the surfaces of, e.g., colloidal particles, the Derjaguin
approximation [17,18] provides a simple relation between
the normalized disjoining potential 9/A between two
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planar surfaces of area A and the normalized disjoining
force F?/R between curved surfaces with characteristic
radius R: e.g., F//R = mQ?/A for the disjoining force
between two (colloidal) spheres with radius R, or
F¢/R = 27wQ4/A for the disjoining force between crossed
cylinders with radius R or between a planar surface and a
sphere with radius R. The latter geometries are used in
experimental setups for direct measurements of disjoining
forces, in a surface-force balance or a colloid-probe atomic
force microscopy setup, respectively, [19,20].

In the present Letter, several novel elements come
together. We formulate a free-energy functional of the
distribution of chain lengths and configurations, and we
establish that the self-consistent field—propagator formal-
ism for living polymers, which was introduced before as
the starting point of theoretical analysis [21], derives from
this functional. Substitution of the equilibrium distribution
into the functional yields all relevant thermodynamic
properties of the interfacial system. Most importantly,
this enables the calculation of the disjoining potential
(the potential of mean force between surfaces) due to
the presence of living polymers. Whereas in a previous
paper the self-consistent segment-density distribution was
obtained for a solution adjoining a single surface [21], in
this Letter we provide numerical results for living-polymer
solutions confined in a gap between two parallel surfaces,
supplemented with approximate analytical expressions.
This enables us to analyze the consequences of the inter-
ference of the surface layers of the two surfaces. Our
analysis reveals at low adsorption strengths the occurrence
of a second-order transition at which properties of the
confined fluid, including the ensuing interaction between
the surfaces, change drastically upon a minute change of
the separation between the surfaces.

In this Letter we will provide a concise outline of the
theory. A complete derivation will be published shortly.
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We examine a solution of living polymers confined in a gap
between two parallel walls with area A, (which will be
taken to be infinite, so that edge effects can be ignored).
This confined solution is considered to be in equilibrium
with a homogeneous reservoir solution, with a fixed mono-
mer chemical potential w. This is representative of the
situation in a colloidal system or with a typical surface-
force measurement. The surfaces have a short-range inter-
action with the polymer segments, quantified by u?(z),
where z is the coordinate normal to the surfaces. In this
Letter the two surfaces are the same. It is straightforward
however to generalize for asymmetric situations. The gap
extends from a surface at z = 0 to the surface at z = D. The
solution in the gap is assumed to be homogeneous in the
lateral direction. As a generalization of the single-particle
density profile for simple particles, py(z™) denotes the
number density of chains with degree of polymerization N
and “configuration” z®™ (specifying the z-positions of all
N segments of the chain). Obviously, from a complete
distribution {py(z™")} the corresponding overall segment-
density profile p(z) follows directly. Expressions for the
equilibrium distribution {py(z"\))} are obtained by mini-
mization of the grand potential functional

Q({pN(zW))} A,D,T)
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where k is Boltzmann’s constant and T the temperature.
The first contribution represents the free energy of a mix-
ture of ideal chains of different length and configuration,
where w y(z™")) reflects the number of possible realizations
of configuration z™). E is the so-called scission energy,
and v, denotes the “binding volume”. The monomer-
monomer binding constant is controlled by the product
voexp(E/kT). The second contribution accounts for the
excluded-volume interactions between segments, where v
is the so-called excluded-volume parameter (second virial
coefficient between segments), and the third term appears
due to the surface field u” interacting with segments. u”
generally diverges at z =0 and at z = D as segments
cannot penetrate the surfaces. In addition there may be
attractive wells adjoining the repulsive region.

We established that the Euler-Lagrange equation
0Q/dpy(z™) =0, for the equilibrium distribution of
chain lengths and configurations, can be recast in the
form of a previously proposed propagator formalism for
the statistical weight of ends of chains of increasing
length N [21,22] (where ‘“‘chain coordinate’” N comes in
the place where in diffusion or quantum problems time

appears) [23,24]. As derived before [21,22], owing to the
exponential chain-length distribution in the reservoir solu-
tion, the segment-density profile for living polymers can be
expressed as p(z) = pog(z)?, where p, is the segment
density in the reservoir and g(z) is the Laplace-transformed
propagator, which is given by the Laplace-transformed
Edwards equation

d’g(z)
R(2) d 2

= xg(2)’ + (1 —x)g(z) — L. 2

Here, Ry = by/(N)y/6, where b is the mean-square seg-
ment length, is the radius of gyration of an unperturbed coil
with degree of polymerization (N),, being the mean degree
of polymerization in the reservoir solution. The excluded-
volume parameter is hidden in x = vpy(N),, which value
distinguishes the dilute regime x << 1 from the excluded-
volume dominated marginal solution x >> 1. Physically,
g(z) has the meaning of a statistical weight of chain ends to
be located at z, integrated over all chain lengths, and the
density distribution of chain ends is simply 2p,g(z)/{N).
As the average degree of polymerization is just the ratio
between the total number of segments over the total num-
ber of chains (which is half the number of ends), we see
that the average degree of polymerization in the gap is
given by (N) = (N), [§ g(z)*dz/ [§ g(2)dz.

Following de Gennes [24], the effects of the segment-
surface interactions can be accounted for by boundary
conditions at the walls: dg(z)/dz = —cg(z) at z =0;
and dg/dz = cg at z = D, where ¢ is a measure of the
adsorption strength. The larger ¢ value, the stronger the
adsorption; ¢! is the the so-called adsorption or extrapo-
lation length. As shown in previous publications on layers
adjoining a single surface, negative adsorption (depletion)
occurs if ¢ <0, weak positive adsorption occurs if 0 <
cRy <1, and strong adsorption if ¢Ry>1 [21]. In this
Letter, we focus on the weak-adsorption regime as this
gives rise to an interesting second-order transition upon
changing the distance between the two confining surfaces.

Substitution of the expression for the equilibrium
distribution {p(z™)} back into Eq. (1) yields an expres-
sion for the equilibrium grand potential: Q/AKT =
—(N)g ' [§ p(z)dz — 3v [§ p(z)*dz and subsequently of
the interfacial excess grand potential Q7 = Q) — ),
where () is the grand potential of a homogeneous solution
with reservoir concentration p, and volume DA. The dis-
joining potential is Q¢ = Q7(D) — Q7(c0).

Figure 1 presents normalized segment-density profiles in
the gap for different distances between surfaces. For large
D/R, ratios, the profiles converge to those at a single
surface, which were presented and discussed in an earlier
paper [21]. For small distances between surfaces when
D/Ry < 1, the segment-density profiles are almost uni-
form, with relatively small concentration gradients across
the gap.
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FIG. 1 (color online). Segment-density profiles between two
adsorbing surfaces separated by various distances D/R,, for
cRy = 0.1. All profiles are for x = 107%. The transition occurs
at D/R, = 0.2, where the density rapidly increases with decreas-
ing distance between surfaces. Note the use of linear as well as
logarithmic vertical axes.

The uniform character of the profiles in the regime of
D/Ry < 1 enables an insightful simple analytical solution
to Eq. (2), which we will call the flat-profile approxima-
tion. After integration of the left- and right-hand sides of
Eq. (2) over the volume, the Gauss theorem can be used to
replace the volume integral of the second derivative on the
lhs by a surface integral of the first derivative, for which we
can substitute —cg according to the surface boundary
condition. Invoking now the uniform profile, g(z) = g,
we arrive at the incomplete cubic equation

xg3+¢g—1=0, 3)

with 4 =1 —x — ZR%C/D. Equation (3) minimizes the
potential xg*/4 + g*>/2 — g for the “order parameter”
g. The first two terms are analogous to the Landau potential
of a system exhibiting a second-order phase transition at a
“reduced temperature” ¢y = . = 0 [25]. For the present
living-polymer system, the symmetry of this Landau
potential is broken by the “external-field” term —1 con-
jugate to g. In the absence of the surface effect, that is, for
c¢/D = 0, the Landau potential would predict a second-
order phase transition at x = 1. However, confinement
introduces the term 2R3c/D in the expression for .
Therefore, adsorbing surfaces shift the phase transition to
a lower value of x.

The physically relevant (positive and real) root
of Bq. (3) is g(¢) = n/(6x) —2¢/n, where 7=
x2/3(108 + 12+/33/(443 +27x) /x)1/3 [26]. For = 0, the
solution yields the monomer density at the second-order
phase transition in the Landau potential: p, = pox~2/3.

For ¢ < 0, the term —1 in Eq. (3) is negligible, so
g>=—4¢/x and p = —py/x. Furthermore, ¢ <0
implies 2Rjc/D > 1 —x; hence, p = poRicD 'x~ .
Consequently, we obtain for this case of small gap
width for the excess amount of segments per unit area

inside the gap 6% = [D(p(z) — pp)dz a limiting
expression 6% /po = 2R3c/x. For the average degree of
polymerization, we obtain (N)/(N), = Ryy/2¢/Dx, and
for the interfacial excess grand potential we obtain
Q7(N)y/AkTpy = —2R}c?/Dx.

In the regime where the flat-profile approximation
clearly fails, at D/R, > 1, the profile is approximated
well as just the sum of two profiles associated with two
separate surfaces derived according to Ref. [21]. This
additivity approximation provides (17(c) needed to
calculate the disjoining potential. For large surface sepa-
rations (D/Ry, > 1) and weak adsorption (cR, < 1), the
excess amount of monomers is limited by 65*/p, = 2 X
2¢R3/(1 + 2x) [21]. The ratio 6$5/65 = (1 + 2x)/2x
indicates that in marginal solutions, at x = 1, the magni-
tude of transition becomes small.

Figure 2 reveals the transition of §°* from 6¢* to 6} at
fixed surface separation upon variation of the adsorption
strength cR,. As discussed above, when D/R, < 1, the
transition happens at ¢ = ¢, = 0, coinciding with the
inflection point of the dependency. The segment-density
profile remains flat after transition at high cR,, reflecting
chains to occupy all the space between surfaces uniformly.
For D/R,, > 1, the weak-adsorption regime is extended up
to higher cR, values at which the transition occurs. The
density profile is not flat, and the transition occurs in two
adsorbed layers separated from each other by a region with
reservoirlike properties (p = p). For this situation the flat-
profile approximation Eq. (3) obviously fails, and the
analysis of adsorbed layers adjoining a separate surface
applies [21].

Figure 3 displays the gap-width dependencies of several
properties of confined solutions of weakly adsorbing
living polymers (cRy = 1): (a) the excess amount of seg-
ments in the gap, per unit area, (b) the mean degree of
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FIG. 2 (color online). The excess amount of monomers con-
fined between adsorbing surfaces versus the adsorption parame-
ter cR at different gap widths. Dotted lines show the scaling
laws discussed in the text. Solid and dashed lines correspond to
i >0 and ¢ <0, respectively. Solid circles denote ¢y = 0.
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FIG. 3 (color online). Characteristics of the confined solution
as a function of the normalized gap width D/R,, for x = 107¢
and for different values of the normalized adsorption strength
cRy: (a) normalized excess of segments, (b) average degree of
polymerization, and (c) the disjoining potential. The drawn lines
are exact numerical results. Open and closed symbols belong to
the flat-profile and the additivity approximation, respectively.
Solid and dashed lines are as in Fig. 2.

polymerization inside the gap, and (c) the disjoining poten-
tial Q¢ (= potential of mean force between the surfaces).
The results were obtained by solving Eq. (2) numerically
and from the flat-profile (open symbols) and additivity
(solid symbols) approximations. Figure 3 demonstrates
that both approximations work well for the regimes where
they are expected to.

For large distances between the surfaces, the excess
amount of segments is just twice that of an adsorption
layer at a single surface as discussed in Ref. [21].
The mean degree of polymerization inside the gap
approaches that of the reservoir solution when the gap

width increases, because reservoirlike properties prevail
in most of the gap (in the space between the adsorption
layers). The disjoining potential vanishes by definition
for D/Ry — .

The transition is clearly recognized in Fig. 3 at the
inflection point, and the local concentration of monomers
and the degree of polymerization changes tremendously
with a small variation of D/R,. It is the cooperativity
between this density change and the change of the degree
of polymerization that constitutes the physical mechanism
of the near-second-order transition. The level to which the
local density inside the gap increases is limited by
the repulsive excluded-volume interactions, quantified by
the parameter v. The transition in the confined living-
polymer solution can be regarded as a ‘“‘rudimentary”
capillary condensation. The latter is the phase transition
upon which the contents of a capillary (e.g., a gap between
two surfaces) turns from vapor to liquid. In the case of two-
dimensional (formation and growth of linear living-
polymer chains) rather than three-dimensional association
(e.g., condensation of liquid from a vapor), a true phase
transition cannot occur, but a near-second-order transition
does take place. At small distances, the uniform density
profile of monomers and the negative value of ¢ yield a
constant value of 6°*/pyR, and scaling of (N)/{N), and
QUN)o/(AkT pyR,) as predicted above by means of the
flat-profile approximation. Remarkably, the disjoining
potential experiences a jump of several orders of magni-
tude at the surface separation D = 2R3c.

In this Letter, we predict a near-second-order phase
transition for living polymers confined by two surfaces.
Properties of the confined system such as the density
profile, the degree of polymerization, and the disjoining
potential between the confining surfaces are sensitive to the
degree of polymerization in the reservoir solution, the
adsorption strength, and the gap width. The confined sys-
tem undergoes a transition when pov(N); < 1 and cRy < 1
at the gap width corresponding to ¢y = 0. An important
consequence is that the disjoining potential between the
surfaces is boosted at the critical surface separation for
systems for which at larger separation adsorption is quite
insignificant. Our approach accounts for adaptable poly-
dispersity and configurational freedom of chains, for the
chain affinity to the surface, and for excluded-volume
interactions between chains. In solutions with relatively
large chains R, > D, the transition occurs in the flat-profile
regime for which the density profile inside the gap is
uniform. In the opposite limit of D > R, a transition
occurs in the separate adsorbed layers. Our results can be
used to design conditions at which living polymers
exert a distinct effect upon surface and intercolloidal
interactions.
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