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We create an artificial graphene system with tunable interactions and study the crossover from metallic

to Mott insulating regimes, both in isolated and coupled two-dimensional honeycomb layers. The artificial

graphene consists of a two-component spin mixture of an ultracold atomic Fermi gas loaded into a

hexagonal optical lattice. For strong repulsive interactions, we observe a suppression of double occupancy

and measure a gapped excitation spectrum. We present a quantitative comparison between our measure-

ments and theory, making use of a novel numerical method to obtain Wannier functions for complex

lattice structures. Extending our studies to time-resolved measurements, we investigate the equilibration

of the double occupancy as a function of lattice loading time.
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The engineering of systems that share their key properties
with graphene [1], like Dirac fermions and a hexagonal
structure, is gaining interest in an increasing number of
disciplines in physics [2]. The artificial structures are created
by confining photons in hexagonal lattices [3,4], by nano-
patterning ultra-high-mobility two-dimensional electron
gases [5], by scanning probe methods to assemblemolecules
on metal surfaces [6], and by trapping ultracold atoms in
optical lattices [7,8]. The motivation for engineering
graphenelike band structures is to explore regimes that are
not, or not yet, accessible to research with graphene or
similar materials. The artificial systems provide new ave-
nues to topological [9,10] and quantum spin Hall insulators
[11,12], as well as to intriguing strongly correlated phases
[13]. To understand the role of interactions in solids with
complex lattice structures [14], ultracold fermionic atoms in
optical lattices are particularly promising, as the interpar-
ticle interactions and kinetic energy can be tuned [15,16],
allowing for the realization of density andmagnetic ordering
[17–19]. In this Letter, we present and analyze a cold-atoms-
based implementation of artificial graphene, where both
the interaction and kinetic energy are tunable over a
broad range. For strong interactions, we realize a 2D Mott
insulator with ultracold fermions.

To obtain a quantum degenerate Fermi gas, we adhere to
the procedure described in previous work [17]. A balanced
spin mixture of 40K atoms in the mF ¼ �9=2 and �7=2
magnetic sublevels of the F ¼ 9=2 hyperfine manifold is
evaporatively cooled in a crossed beam optical dipole trap
to 15(2)% of the Fermi temperature. We prepare Fermi
gases with total atom numbers between N ¼ 25� 103 and
300� 103, with 10% systematic uncertainty [20]. We either
set the scattering length to 86ð2Þa0 using a Feshbach reso-
nance or transfer to anmF ¼ ð�9=2;�5=2Þmixture, where
we access more repulsive interactions in the range of

a ¼ 242ð1Þa0 to 632ð12Þa0 (the Bohr radius is denoted
with a0).
We then load the atoms into a tunable-geometry optical

lattice [8] operating at a wavelength of � ¼ 1064 nm and
consisting of three noninterfering, orthogonal standing-
wave laser beams X, Y, and ~Z. An additional beam X
copropagates with X and interferes with Y; see Fig. 1.
This gives rise to the potential

Vðx; y; zÞ ¼ �VXcos
2ðkLxþ �=2Þ � VXcos

2ðkLxÞ
� VYcos

2ðkLyÞ � V ~Zcos
2ðkLzÞ

� 2�
ffiffiffiffiffiffiffiffiffiffiffiffi
VXVY

p
cosðkLxÞ cosðkLyÞ cos’; (1)

with kL ¼ 2�=�, visibility � ¼ 0:90ð5Þ, ’ ¼ 0:00ð3Þ�,
and � ¼ 1:000ð1Þ�. The phase ’ between the interfering
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FIG. 1 (color online). Experimental setup used to create the
artificial graphene system. Independent 2D layers of honeycomb
geometry are realized using a tunable-geometry optical lattice.
A sketch of the tunneling structure within the layers is shown on
the right. The potential barriers between the sites are chosen such
that the nearest-neighbor tunneling t in the hexagonal planes is
equal along all bonds, resulting in a band structure containing
two Dirac points [23]. A repulsively interacting two-component
spin mixture of fermionic 40K atoms (red and blue spheres) is
loaded into the lattice. Gravity points along y.
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beams X and Y is stabilized interferometrically, whereas
the phase � is controlled by the frequency difference
between the beams X and X. When tuning the lattice to a
honeycomb geometry, Dirac points and their linear disper-
sion relation have been observed and characterized using
Bloch-Zener transfers of noninteracting fermions, in excel-
lent agreement with ab initio theory [8,21,22]. For the
measurements presented in the following, the final lattice
depths in units of the recoil energy are VX;X;Y; ~Z=ER ¼
½14:0ð4Þ; 0:79ð2Þ; 6:45ð20Þ; 30ð1Þ�, unless explicitly stated
otherwise. All beams are ramped up simultaneously to
their final intensities within 200 ms. The resulting potential
contains several independent 2D honeycomb layers with a
band structure containing two Dirac points [23]. The inter-
layer tunneling rate is below 2 Hz. For the combined
external confining potential of the dipole trap and
the lattice laser beams, we measure harmonic trapping
frequencies of !x;y;z=2� ¼ ½86ð2Þ; 122ð1Þ; 57ð1Þ� Hz.

We characterize the state of our system by measuring the
fraction of atoms on doubly occupied sites D [17,20].
To determine D, the tunneling is suppressed by switching
off VX in roughly 5 �s and ramping up VX and VY linearly

to a depth of 30ER within 500 �s. We then perform
interaction dependent radio-frequency spectroscopy to
obtain D [17]. Both the independently determined offset
in D of 2.2(3)% due to an imperfect initial spin mixture as
well as the calibrated detection efficiency of 89(2)% for
double occupancies are taken into account [19].

In the experiment, we tune interactions from weakly
[U=3t ¼ 1:8ð3Þ] to strongly repulsive [U=3t ¼ 13ð1Þ] and
measure the double occupancy D as a function of the atom
numberN in the lattice; see Fig. 2(a). For weak interactions,
the system is in a metallic state which is compressible, as
signaled by an initial strong increase of D [24]. Here,
creating more double occupancies requires less energy
than placing additional atoms in the outside region of the
harmonic trap where the potential energy is large. For high
atom numbers, D saturates as the system enters a band
insulating state. When increasing interactions, an incom-
pressible Mott insulating state forms in the center of the
trapped system. Therefore, D is strongly suppressed and
does not increase as more atoms are added to the system.
Only for the highest atom numbers does the chemical
potential become comparable to the on-site interaction,
allowing for the creation of double occupancies [17].

A quantitative comparison of our results with a
microscopic theory is made possible by describing our
system by the Fermi-Hubbard Hamiltonian

Ĥ ¼ �t
X

hiji;�
ðĉyi�ĉj� þ H:c:Þ þU

X

i

n̂i"n̂i# þ
X

i;�

Vin̂i�; (2)

where ĉyi� and ĉi� denote the fermionic creation and anni-
hilation operators for the two spin states � 2 f"; #g and hiji
denotes nearest neighbors. The energy of the harmonic

trap is Vi, and n̂i� ¼ ĉyi�ĉi� is the density operator on

site i. The determination of the on-site interaction energy
U and the nearest-neighbor tunneling matrix element t
requires an accurate calculation of the Wannier states,
which is challenging for complex lattice structures such
as those used in our experiment. To date, the Marzari-
Vanderbilt scheme [25,26], which numerically minimizes
the Wannier functions’ spatial variance, has become well
established in the solid state community and has recently
also been used for optical lattices [27–29]. However, for
complex lattice structures, a direct minimization may get
stuck in local minima and becomes numerically expensive,
requiring lattice-specific adaptations [28]. Instead, our
numerical method (see Ref. [23]) is based on the alterna-
tive definition of Wannier states as eigenstates of band-
projected position operators [30], which we show to be a
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FIG. 2 (color online). Observing the metal to Mott insulator
crossover in artificial graphene. (a) The measured double occu-
pancy D versus atom number N for three different interaction
strengths U=3t. For strong interactions, an incompressible Mott
insulating core forms, leading to a strong suppression ofD. Solid
lines are theory predictions based on a high-temperature series
expansion. (b) Excitation spectrum obtained by measuring D
after sinusoidal modulation of the lattice depth VY for the same
interaction strengths as above. The solid lines are Gaussian fits to
the spectra. Arrows show the reference value without modula-
tion. (c) Comparison of the extracted Hubbard parameters U
with those obtained from a calculation of the Wannier functions
in the honeycomb lattice. Error bars in D and N show the
standard deviation of 5 measurements. In (c), the uncertainty
in a and the fit error for the peak positions are smaller than the
displayed data points. Data for additional interactions can be
found in Ref. [23]. Negative values of D are caused by the
subtraction of an independently measured offset.
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very suitable starting point for a numerical procedure.
The projection operator onto a subset of bands A can be
written as PA ¼ P

�2A;kjk; �ihk; �j, where jk; �i is the
2D Bloch state with quasimomentum k in band � obtained
from a standard band structure calculation of the lattice
potential. The Wannier states are then given by the
simultaneous eigenstates of the two operators Rj ¼
PAðbj � r̂ÞPA with r̂ ¼ ðx̂; ŷÞT being real-space position

operators, the reciprocal lattice vectors bj, and j ¼ 1, 2.

The calculation of the matrix elements hk; �jRjjk0; �0i via
real-space integration can be performed analytically [23],
reducing to a discrete summation of terms, which can be
efficiently computed. In general, A contains as many
bands as there are sites per unit cell, i.e., two for the
honeycomb lattice. By finding the simultaneous eigen-
states of these two position operators projected onto the
lowest two bands, we explicitly obtain the maximally
localized Wannier states. The tunneling between nearest
neighbors and the interaction energy U is subsequently
determined in the usual way from Wannier function over-
lap integrals [31]. Our method is extendible to inhomoge-
neous systems, generic to all dimensions, and allows
proving the conjecture that the Wannier functions can be
chosen to be real [23]. The method also holds for unit
cells not symmetric under spatial reflection and if the
Wannier states are no longer the Fourier transform of
Bloch states.

We validate the qualitative interpretation of the data in
Fig. 2(a) using a high-temperature series expansion up to
second order of the grand canonical partition function [32]
to determine the expected D. For the calculation, we use a
nearest-neighbor tunneling of t=h ¼ 172ð20Þ Hz within
the layers (h is Planck’s constant) and separately measured
on-site interaction energies U=h ¼ ½0:92ð12Þ; 3:18ð2Þ;
6:52ð3Þ� kHz at the chosen scattering lengths a ¼
½86ð2Þ; 270ð1Þ; 632ð12Þ�a0. The model assumes a connec-
tivity of 3 within the 2D planes and no interlayer tunneling,
as well as a globally thermalized cloud. Both finite tem-
perature and the harmonic trap are taken into account. We
obtain overall good agreement with theory when allowing
for the entropy per atom in the lattice s ¼ S=N as a
fit parameter [20]. For the three interactions, the fitted
entropies of s ¼ ½2:1; 2:7; 1:7�kB are comparable to sin ¼
1:5ð2ÞkB and sout ¼ 2:5ð1ÞkB measured in the dipole trap
before loading and after reversing the loading procedure
(kB is the Boltzmann constant). From these parameters, we
compute that about 50 layers contain Mott insulating cores,
each of which consists of up to 2000 atoms. Deviations
from theory are likely to arise because of incomplete
thermalization. The tunneling time scale is expected to
be sufficiently fast for equilibration within layers (see
below). Yet, the slow interlayer tunneling when approach-
ing the final configuration hinders the formation of a
globally thermalized state. A more detailed analysis would
require a full nonequilibrium model of coupled 2D layers.

A characteristic feature of a Mott insulator is a gapped
excitation spectrum [33], which we probe by recording D
in response to modulating the lattice depth at different
frequencies � [17]. After loading the gas into the lattice,
we sinusoidally modulate VY for 40 ms by �10%. As VY

interferes with VX, this leads to a modulation in tunneling
tx (ty) of �� 7% (� 17%) as well as an additional

modulation of U by �3% caused by the changing width
of the Wannier functions. For all potentials sampled during
the modulation, the Dirac points are retained in the band
structure, as tx < 2ty [21]. For the whole parameter range,

the response of the system is within the linear regime of
double occupancy creation [34], where the creation rate is
proportional to the energy absorption rate [35]. In Fig. 2(b),
we plot both the response and the measured base level
without modulation (arrows) for the same interactions as
used in Fig. 2(a) and N ¼ 80ð2Þ � 103. For weak interac-
tions, there is almost no detectable response. When entering
the Mott insulating regime, we observe a gapped spectrum
with a pronounced peak at � ¼ U=h, corresponding to the
creation of localized double occupancies.
In Fig. 2(c), we compare the peak position at � ¼ U=h

obtained from Gaussian fits to modulation spectra for
various scattering lengths [23] with the on-site interaction
energy calculated usingWannier functions. For weak inter-
actions, the ab initio calculation of the Hubbard parameter
U agrees well with the measured value [see also Fig. 4(d)].
Deviations are observed for the strongest interactions. We
attribute this effect to the deep optical lattice in one direc-
tion leading to a size of the Wannier function comparable
to the scattering length and possibly higher band effects.
A more detailed theory would, however, be necessary for a
quantitative comparison in this regime.
The equilibration within the 2D honeycomb layers

requires a change of the quantum many-body state during
the lattice loading process. This is determined by the time
necessary for the global density redistribution and the for-
mation of correlations associated with the change in external
potential. So far, equilibration dynamics have been inves-
tigated experimentally for bosonic atoms in optical lattices
[36–38], whereas for strongly correlated fermions, the time
evolution from the continuum to the Hubbard regime has not
been studied yet. In Fig. 3, we study the lattice loading
process by measuring the resulting D after an S-shaped
intensity ramp [23] lasting between �L ¼ 5 ms and �L ¼
600 ms. Both for intermediate [a ¼ 242ð1Þa0] and strong
interactions [a ¼ 632ð12Þa0], we observe a fast rise of D
within roughly 200 ms followed by a slow decay. We addi-
tionally plot the expected D as derived from the high-
temperature series expansion (solid line), assuming global
thermal equilibrium and taking into account atom loss and
an independently determined heating rate [23]. For �L *
200 ms, the measured double occupancy agrees with the
theoretical model. When comparing this time scale with the
nearest-neighbor tunneling time of 6 ms in the honeycomb
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layers, this suggests that 200 ms is sufficient for density
redistribution within the 2D layers (for the case of coupled
layers, similar time scales are observed [23]). The calculated
density profiles for different interactions and atom numbers
(insets of Fig. 3) indicate that the core density has to increase
when loading the atoms from the dipole trap into the lattice.
For very short ramp times, this density redistribution cannot
occur, leading to densities in the trap center, which are too
low. This is confirmed by the observed low values of D as
compared to theory for small �L.

The coupling between 2D layers is known to alter their
physical properties as compared to monolayer systems. For
the case of real graphene, this has been used to modify the
dispersion relation around the Dirac points [39]. In our
experiment, coupled honeycomb layers stacked as shown
in Fig. 4(a) can be produced, opening the possibility to
simulate multilayer systems with tunable interactions. The
tunneling between sites of adjacent layers t? can be con-
trolled via the lattice depth V ~Z. In the following, we set
V ~Z ¼ 7ER (corresponding to t ¼ t?) and investigate the
dependence of double occupancy on atom number; see
Fig. 4(b). The scattering length is set to the same values as
in Fig. 3, and !x;y;z=2� ¼ ½55:7ð7Þ; 106ð1Þ; 57ð1Þ� Hz. For
weak repulsive interactions [U=5t ¼ 2:5ð3Þ with U=h ¼
2:18ð4Þ kHz], the system is metallic, whereas for large
interactions [U=5t ¼ 5:6ð7Þ with U=h ¼ 4:82ð2Þ kHz],

the half-filled system is in the Mott insulating regime,
signaled by a strong suppression of D. We find excellent
agreement with the theoretical predictions of the high-
temperature series expansion using a connectivity of 5.
The fitted entropy per particle is s ¼ 1:8kB for both inter-
actions. As compared to the 2D measurements, we find only
negligible deviations from the calculated double occupancy
for the whole range of interactions [23]. We attribute this
to the fast tunneling time between layers, leading to
equilibration even between the honeycomb planes.
Both the uncoupled- and coupled-layer systems show

a crossover from the metallic to the Mott insulating
regime. However, quantitative differences are observed
in the double occupancy dependence for the case of
coupled layers. These differences originate in the altered
lattice structure, which changes both the lattice connec-
tivity and on-site interaction U. Using the same method
as for the 2D data, we measure the lattice modulation
spectra and find a reduction by about 25% for the value
of U at the same scattering length; see Fig. 4(c). For
strong interactions, a gapped excitation spectrum is
found, as expected for a Mott insulating state. The
experimentally determined U is shown in Fig. 4(d). In
contrast to the 2D measurements, it does not deviate
from the results obtained from lowest-band Wannier
function overlap integrals even for the largest scattering
lengths, owing to the weaker lattice depth along the
coupled-layer direction.
In conclusion, we have investigated the properties of an

artificial graphene system as a function of interactions.
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FIG. 3 (color online). The lattice loading process. The panels
show D after loading ramps with varying duration �L for two
interactions and two initial atom numbers. The solid line is the
expected D from the high-temperature series expansion, taking
atom loss and heating during lattice loading into account [23].
The insets show the calculated equilibrium density profiles for
the atomic cloud in the optical dipole trap (dashed lines) and
in the lattice (solid lines), illustrating the required density redis-
tribution during the loading. Here, the initial atom number and
entropies before loading into the lattice were used. Error bars in
D show the standard deviation of 3 measurements.

0 100 200 300

N (103)

0.0

0.1

0.2

D

U/5t =5.6

U/5t =2.5

0.0 2.0 4.0 6.0 8.0
(kHz)

0.00

0.05

0.10

0.15

0.20

D

0 200 400 600
a (a0)

0

2

4

6

U
/h

(k
H

z)

(a) (b)

(c) (d)

0
0.0

0.1

0.2

D

0.20 6

(a) (b)

(c) (d)

t

t

t = t

FIG. 4 (color online). Coupled layers of artificial graphene.
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Mapping to a microscopic theory has provided insight into
equilibration dynamics and the effect of coupling layers.
The realization of a two-dimensional fermionic Mott insu-
lator provides a platform for studying further strongly
correlated phases, which have attracted particular interest
in the honeycomb geometry, where spin-liquid and
superconducting phases have been predicted [13,40,41].
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