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We study the dynamics of a bilayer system of ultracold polar molecules, which exhibits classical and

quantum glassy behavior, characterized by long tails in the relaxation time and dynamical heterogeneity.

In the proposed setup, quantum fluctuations are of the order of thermal fluctuations and the degree of

frustration can be tuned by the interlayer distance. We discuss the possible observation of a glassy

anomalous diffusion and dynamical heterogeneity in experiment using internal degrees of freedom of the

molecules in combination with optical detection.
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The recent experimental realization of cold ensembles of
polar molecules [1] has opened a new pathway to explore
the dynamics of quantum many-body systems with strong,
long-range, and anisotropic polar interactions [2–9]. In
combination with low-dimensional trapping geometries,
this allows the realization of stable many-body phases,
for example, in the form of 1D wires or 2D pancakes
[10–13], or as stacked pancakes representing coupled
multilayer systems [14–18]. Most of the experimental
and theoretical studies of polar molecular gases have
focused thus far on the quantum degenerate regime, and
on equilibrium phenomena, including superfluid and crys-
tal phases, quantum magnetism, and topological phases
(for a review, see [8,9]). Instead, our interest below will
be on nonequilibrium many-body dynamics. We will show
that a bilayer setup of ultracold polar bosonic molecules
can feature a glass phase, and we present methods to
prepare this phase and measure the relevant order parame-
ters with tools available with present experimental setups.
The unique feature and the theoretical challenge of glass
physics with cold molecular ensembles is the possibility to
study the crossover from classical to quantum glasses.

A glass phase is characterized by a plateau in the re-
laxation time scale, known as aging, with exponentially
increasing tails that prevent the system from reaching its
equilibrium state [13,19–21]. In a structural glass, global
reorganization to the equilibrium is prevented from geo-
metric frustration as a result of the dynamics [22]. While
large reorientation is slow, on a local scale, relaxation can
be fast, a phenomenon known as dynamical heterogeneity
[23]. In a classical glass this relaxation dynamics is domi-
nated by thermal fluctuations, and a considerable under-
standing of the glass transition has been gained from
various theoretical methods [19,24–28] and experimental
model systems [29–31]. In contrast, the question of the
influence of quantum fluctuations on the glass relaxation
dynamics is far less well understood. Recent theoretical
studies indicate, based on analytical [28,32,33] and

numerical [34–36] methods, that quantum fluctuations
can enhance but also inhibit the glass transition.
In this Letter, we propose and analyze a protocol to

prepare and measure a glass phase in a bilayer setup of
cold polar molecules in the regime of the crossover from a
classical to a quantum glass. We assume ultracold mole-
cules prepared in their electronic and rovibrational ground
states, where a static electric field E � Eez oriented per-
pendicular to the trapping layers in the xy plane induces an
electric dipole moment d � dez. Thus the molecules will
interact according to strong, long-range, and anisotropic
dipole-dipole interaction. The stacked pancake potential of
Figs. 1(a) and 1(b) can be realized with a 1D optical lattice
with layer separation s controllable by laser parameters.
For strong confinement the motion of the molecule within
each layer can be described as an effective 2D dynamics,
while the tunneling between adjacent layers will be sup-
pressed by a sufficiently high barrier. The Hamiltonian
for our bilayer system thus has the form H ¼ HA þHB þ
HAB. Here, HA (HB) is the Hamiltonian for the intralayer
dynamics,
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as the sum of kinetic energy and a transverse trapping
potential, and the (purely repulsive) dipolar interaction
with in-plane distance r. The interlayer interactions are
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with s the layer separation and R the distance between the
molecules with R2 ¼ r2 þ s2. Note that our model allows
for different dipole moments dA and dB in layers A and B,
respectively. Different effective dipole moments in the two
layers can be achieved, e.g., by a gradient in the electric
field Ez or by engineering of the interactions using internal
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rotational degrees of freedom [8]. As we will see below,
this feature is essential to observe clear signatures of a
glass phase.

The basic steps of our protocol to study glassy dynamics
are as follows. (i) We start with two uncoupled layers
(s large), where layer A is in a high density 2D crystal
phase and layer B is in a low density gas phase. To prepare
the initial state for the dynamics, the layer separation is
quenched to a small distance s, which leads to the forma-
tion of defects with various symmetries and patterns
depending on the value of s (see Fig. 1). (ii) We evolve
the system to find glassy dynamics, identified by dynami-
cal heterogeneity, the deviation from the linear diffusion
law, and a plateau in the relaxation (see Fig. 2). (iii) In
order to measure these features in a possible experiment
with cold molecules, we introduce marker molecules,
i.e., molecules prepared in a different internal state,
which allow tracking the time evolution of the particles
(see Fig. 3).

Preparation of the initial state.—We first prepare mole-
cules in two uncoupled layers: a dipolar crystal of polar

molecules in layer A and a low density phase of defects in
layer B. For uncoupled layers, the phase of layer A is
described by parameters rd ¼ Dm=½@2a� and K ¼
kBTa

3=D, where D ¼ d2A=ð4��0Þ. The first parameter is

the ratio of the dipolar interaction D=a3 for a given mean
intralayer distance between the particles a and the kinetic
energy @

2=ma2, which in the dipolar crystal phase is
rd � 1. The second parameter measures the temperature
in units of the interaction. For bosons the relevant phase
diagram is sketched in Fig. 1(c) [10], which at low tem-
peratures shows a low density (2D) superfluid phase, a high
density crystal phase, and a high temperature fluid phase.
The theoretically predicted conditions for the formation of
a self-assembled crystal are, in the case of bosons, rd > 20
and K < 0:1 [10]. We note that these conditions for rd and
K are a requirement for temperature, density, and dipole
moment. While in present experiments with KRb the crys-
talline phase has not been realized, the ongoing effort in the
laboratory to prepare cold ensembles of LiCs molecules
[37] with its large electric dipole moment � ¼ 5:3 D and
mass m ¼ 92 u provides a promising candidate to obtain
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FIG. 2 (color online). Glass order parameters in the classical
(top) and semiclassical regime from path integral calculations
(bottom). (a) In the glass phase, the average mean squared
displacement of the particles deviates from the constant diffu-
sion. In the antiparallel setup the plateau extends over the whole
sampling time below K < 0:02 of the combined system. (b) The
relaxation of the time dependent structure factor Fðk�; tÞ for s ¼
0:5a with dB ¼ 4dA (black) and dB ¼ �dA (red) diverges when
approaching the glass phase [symbols as in (a)]. (c) Relaxation
dynamics with initial temperature K ¼ 0:01 in the antiparallel
setup for various choices for rd ¼ Dm=½@2hai� of the combined
system, with hai the average distance in the xy plane. Parameters
are chosen such that the system enters the glass phase in the
classical limit m ! 1 and melts with smaller rd due to quantum
fluctuations (blue). This allows one to study the crossover from a
classical glass to a quantum phase. (d) Relaxation dynamics as a
function of the layer separation with effective rd � 20–25 and
K ¼ 0:02 in the antiparallel setup. While for distance s ¼ 0:5a
the system is a liquid due to large quantum fluctuations (blue),
one reaches the glass phase when approaching s ¼ 0:2a (black).
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FIG. 1 (color online). Bilayer setup of trapped polar molecules
with parallel dipole moments (a) and antiparallel dipole mo-
ments (b). The lower layer represents a high density dipolar
crystal, the upper layer is loaded with low density (see text). A
typical route to enter the glass phase is to quench the system
from the liquid to a supercooled phase. In contrast, here the glass
phase is reached by decreasing the layer separation s. (c) Sketch
of the phase diagram of a single layer of bosonic polar molecules
with the ratio between kinetic energy and interaction K and rd
from Ref. [10]. Note that the limit m ! 1 corresponds to the
classical limit as the extension of the wave function vanishes
with �dB ¼ h=ð2�mkBTÞ1=2. The arrow indicates the parameter
region of interest. (d) For parallel dipoles [(a)], the effective
volume and symmetry of the defects depends on the interlayer
separation. The ground state from a classical simulated anneal-
ing calculation at T ¼ 0 includes patterns of triangular and cubic
symmetries where particles in the crystal layer (red) are dis-
placed by the molecules in the defect layer (blue). (e) For
antiparallel dipoles [(b)], defect patterns can range from trian-
gular, cubic to fivefold symmetries.
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dipolar crystals. In this case for a given temperature
T ¼ 0:1 �K the requirement on rd and K corresponds to
an effective (induced) dipole moment of dA ¼ 2:17 D and
a lattice spacing of the self-assembled triangular crystal
a ¼ 0:32 �m. We assume that the density in layer B is
lower than that in layer A while all other parameters are the
same. In the following we find it convenient to define
length, energy, and time in the reduced units a, D=a3,

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma3=D

p
, respectively.

To prepare the initial state for the glassy dynamics, the
two layers are brought together by a quench in the layer
separation. The speed of the quench is chosen such that
nonadiabatic effects are negligible [38]. We consider two
cases: the dipoles can be aligned parallel [see Fig. 1(a)] or
antiparallel [see Fig. 1(b)]. Figure 1(d) depicts the resulting
defect patterns for parallel dipoles dB ¼ 4dA where mole-
cules belonging to different layers attract each other.

This attraction leads to stable dimers or trimers [8] if the
two layers are separated by s � a. These composite
defects are reminiscent of interstitials in a crystal. Here,
the effective volume of the interstitials can be tuned by the
ratio of the dipole moments dA=dB and the interlayer
separation s. For various layer separations ranging from
s ¼ 0:25 to s ¼ a, the resulting patterns include hexago-
nal, cubic, and asymmetric defects. We note that the
binding energy of similar impurities has recently been
studied in a fermionic system [39]. In the antiparallel
case, dB ¼ �dA, the interlayer interaction is repulsive.
This can be achieved using internal rotational degrees of
freedom [8]. The defect patterns depicted in Fig. 1(e)
include cubic, fivefold symmetric, and triangular symme-
tries reminiscent of vacancy defects with an effective
volume that can be tuned by the layer separation.
In both cases the combined system is a mixture of effec-

tive defects and molecules reminiscent of a binary mixture
of dipoles, a well-known glass-forming liquid in the classi-
cal regime [30,31]. We note that the antiparallel setup
allows one to induce defects with fivefold symmetry which
may allow one to implement a quantum system similar to
the recently proposed classical spin liquid model [21].
Glass dynamics.—Below we study the relevant glass

order parameters from the dynamics of the proposed setup
after the quench. In the classical regime we use molecular
dynamics simulations. In the quantum regime we employ
the recently developed dynamical path integral methods,
which have been applied to the glass transition in Ref. [34]
(for details see the Supplemental Material [38]). We note
that these methods include quantum effects but ignore the
exchange statistics between the particles, and we are inter-
ested mainly in the transition from the classical phase to a
phase where quantum fluctuations become important.
A glass phase is identified by a dramatic increase in the

relaxation time which diverges with �r / exp½�1=ðT �
TgÞ�, where Tg is the ideal glass temperature [19]. This

corresponds to an extended plateau in the self-intermediate
scattering function [19], a two-time correlation function
defined as

Fðk�;�tÞ ¼ 1

N

X
j

heik�½rjðtÞ�rjðtþ�tÞ�i: (3)

Here, angular brackets h�i denote averages over many real-
izations of the experiment after the quench. The sum runs
over all particles in both layers N ¼ NA þ NB, and k� ¼
jk�j is the absolute value of the characteristic k vector of the
coupled system corresponding to the first peak in the static

structure factor SðkÞ ¼ ð1=NÞPi

P
jhe�ik½ri�rj�i, where r is

the distance in the xy plane. Note that Eq. (3) bears some
similarity with the Fourier transform of the density-density
correlation function; however, here the sum runs over indi-
vidual particles at different times. In the path integral
picture, the analogous order parameter to the classical
case Eq. (3) reads as [34]
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FIG. 3 (color online). Dynamical heterogeneity of a quantum
glass in the proposed setup. Molecules in an excited internal
state act as marker molecules to identify glassy dynamics.
(a) Typical initial configuration of layer A (red) and layer B
(blue) depicted as the projection of the paths onto real space.
(b) The parameter c i

6 measures the relative order in the vicinity

of particle i (see Supplemental Material [38]). Here, regions of
large (small) order are regions of small (large) classical diffusion
and a small (large) extension of the particle wave function.
(c) Snapshots of two possible initial choices of marker molecule
positions (green and orange) at �t ¼ 0 with Rg ¼ R0. The

particle positions indicated by spheres represent the maximum
of the path probability in layer A (gray) and layer B (light blue).
(d) Indicating dynamical heterogeneity, the radius of gyration of
marker molecules after time �t ¼ 1:5	 102 differs depending
on the initial position. The cloud of marker molecules placed in
an inactive region (green) of the glass follows the dynamics of an
amorphous crystal Rg ¼ R0 while molecules in a mobile region

(orange) show a fast increase in size (inset). Note that dynamical
heterogeneity is a general feature of glasses, which is
also present in systems without apparent partial crystallinity
(see Supplemental Material [38]).
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�ðk�;�tÞ ¼ 1

N@�

Z @�

0
d�h�yðtþ �tþ i�Þ�ðtÞi: (4)

Here, �ðk;�tÞ ¼ P
N
j eikrj and the integral runs over the

imaginary path integral time. The semiclassical approxi-
mation allows one to follow the real time propagation of
the path integral neglecting exchange [40].

A crucial dynamical characteristic of the glass phase is
its deviation from the linear diffusion law. In particular, the
local diffusion of individual particles is spatially heteroge-
neous, a characteristic of the glass phase known as dynami-
cal heterogeneity. The local diffusion of particle j is
�rjð�tÞ ¼ hrjðtþ �tÞ � rjðtÞi and the mean squared dis-

placements h�r2ð�tÞi ¼ 1=N
P

i�r
2
i ð�tÞ. In the presence

of quantum fluctuations the analogous measure in the path
integral picture is the root mean squared displacement of

the projections of the path integral with r̂jðtÞ¼ ð1=N@�Þ	R
@�
0 d�rjðtþ i�Þ and �r̂jð�tÞ ¼ hr̂jðtþ �tÞ � r̂jðtÞi.
The unique feature of the bilayer system of ultracold

molecules is the possibility to study glassy dynamics in
both the classical and quantum regimes, which are charac-
terized by the dominance of thermal versus quantum
fluctuations, respectively. This transition can be controlled
by three tunable parameters: s representing the layer sepa-
ration, the dimensionless temperature K, and the dipolar
crystal parameter rd. The case of large rd corresponds to
the classical limit where the glass transition can be studied
by varying K with fixed rd. The averaged root mean
square displacement as a function of time is shown in
Fig. 2(a). The dynamics does not follow the Einstein
diffusion law h�r2ð�tÞi � 2Dd�t but develops a plateau
for an effective K of the combined system smaller than
K<0:02. Figure 2(b) shows the relaxation dynamics
Fðk�;�tÞ for a final layer separation s ¼ 0:5a in the clas-
sical regime. Both setups with parallel and antiparallel
dipoles show a growing plateau and enter a glass phase.

Including quantum fluctuations the relaxation dynamics
of the system changes considerably. Figure 2(c) depicts the
relaxation dynamics�ðk�;�tÞ calculated from a path inte-
gral simulation as a function of rd at a fixed K. With
increasing rd, the dynamics approaches the glass dynamics
from the molecular dynamics simulation (rd ! 1).
Lowering rd allows one to study the influence of quantum
fluctuations in the glass phase. In the bilayer system one
can also reach the glass phase by variation of the layer
separation as shown in Fig. 2(d). Note that, in contrast to
classical model systems of colloids [31], here the dynamics
after the initial thermalization is that of an isolated system
(microcanonical). However, this does not influence the
long tail part in the relaxation [41].

Measurement of dynamical heterogenity.—One way to
measure the anomalous diffusion as a glass feature is to
consider a subensemble of polar molecules in a small spatial
region (marker molecules), which are addressed with a
laser and transferred to another internal (e.g., hyperfine)

state [4]. The position of this molecular cloud at a later
time can be measured with optical techniques. The ultimate
tool for such position measurements will be provided by
the molecular quantum gas microscope with single site
resolution [42]. Dynamical heterogeneity can be measured
as follows: We mark molecules in a small region with
laser waist size R0 > a. After the system evolves in time,
the positions of the marker molecules are measured by the
extension of the cloud of marker molecules given by the
radius of gyration,R2

g ¼ 1=ð2N2ÞPi;jðri � rjÞ2. In a liquid a
cloud of tagged particles spreads out linearlywith timewhile
in an amorphous solid it is constant, Rg=R0 ¼ 1. In both

cases this is independent of the initial position of the maker
molecules as the dynamics is spatially homogeneous.
However, in the glass phase due to dynamical heterogeneity
the scaling differs significantly depending on the initial
position (see Fig. 3). As the initial size is known (R0 from
the laserwaist), a series of single (destructive)measurements
after time�t allows one to distinguish a glass from liquid or
amorphous solid (see Fig. 3). Note that themarkermolecules
are quantum mechanically distinguishable, which changes
the dynamics in the deep quantum regime when exchange
statistics is included,which is not relevant in the present case.
In conclusion, we have shown that a bilayer system of

polar molecules can, with properly chosen parameters,
exhibit a glass phase in a regime where quantum fluctua-
tions are of the order of thermal fluctuations. Thus, ultra-
cold ensembles of polar molecules can provide a tunable
paradigmatic model system for classical and quantum glass
physics, where theory and experiment can meet in a yet
unexplored parameter regime of glass physics, providing,
in particular, a stimulus for theoretical developments.
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