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Wepresent a novel approach to the inference of spectral functions fromEuclidean time correlator data that

makes close contact with modern Bayesian concepts. Our method differs significantly from the maximum

entropy method (MEM). A new set of axioms is postulated for the prior probability, leading to an improved

expression, which is devoid of the asymptotically flat directions present in the Shanon-Jaynes entropy.

Hyperparameters are integrated out explicitly, liberating us from the Gaussian approximations underlying

the evidence approach of the maximum entropy method. We present a realistic test of our method in the

context of the nonperturbative extraction of the heavy quark potential. Based on hard-thermal-loop

correlator mock data, we establish firm requirements in the number of data points and their accuracy for

a successful extraction of the potential from lattice QCD. Finally we reinvestigate quenched lattice QCD

correlators from a previous study and provide an improved potential estimation at T ¼ 2:33TC.
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The numerical solution of inverse problems is an active
area of research with important applications in science and
engineering. In the context of QCD physics, the estimation
of spectral functions from Euclidean correlators is of par-
ticular interest. A reliable determination of ground and
excited state properties of mesons and baryons at zero
temperature [1] from nonperturbative Monte Carlo simu-
lations (lattice QCD), e.g., represents an important bridge
between field theory and experiment. At finite temperature,
lattice spectral functions allow us to scrutinize the physics
of the early universe by elucidating phenomena, such as
heavy quarkonium melting [2] and the transport properties
[3] of the quark-gluon plasma produced in relativistic
heavy-ion collisions.

The most common approach to spectral function recon-
struction deployed today, the maximum entropy method
(MEM) [4], is based on Bayesian inference. Nevertheless,
even after 20 years of application [2,5–7], the reliability
of the MEM is still under discussion [8–10]. Here we
introduce a novel Bayesian approach that addresses key
issues affecting the MEM: slow convergence of the under-
lying optimization task, high computational cost for
extended search spaces, scale dependence in the prior
functional and the Gaussian approximation required in
the hyperparameter estimation.

The Bayesian strategy [11] relies on an application of
the multiplication law for the joint probability distribution
of the spectral function of the system under investigation �,
the measured data D, and any other prior information I,

P½�;D; I� ) P½�jD; I� ¼ P½Dj�; I�P½�jI�
P½DjI� : (1)

We specify in the likelihood probability P½Dj�; I� how the
data is obtained, while the prior probability P½�jI� encodes
how prior information on � itself enters the posterior

P½�jD; I�. Ultimately our interest lies in the maximum
a posteriori estimate for �, which we refer to as the
Bayesian solution to the inverse problem.
In the following, we aim at inverting the convolution,

Dð�Þ ¼
Z

d!Kð!; �Þ�ð!Þ; (2)

which connects the spectral function �ð!Þ> 0 through a
known kernel function Kð�;!Þ to the correlation function
Dð�Þ. In practice the correlator is estimated at N� points
Dð�iÞ ¼ Di from a sample of Gaussian distributed mea-
surements. After discretization of the frequencies alongN!

points spaced by �!l ¼ !lþ1 �!l; we can compute the
corresponding data for each spectrum �ð!lÞ ¼ �l,

D�
i ¼ XN!

l¼1

�!lKil�l: (3)

According to the Gaussian assumption, we use the
quadratic distance

L ¼ 1

2

X
ij

ðDi �D
�
i ÞC�1

ij ðDj �D
�
j Þ; (4)

to assign a probability to the data given a test spectral
function. Here Cij denotes the covariance matrix of the

data points. We know that, independently of N!, if
L=N� � 1, � does not reproduce the data points within
their errorbars, while if L=N� � 1 the spectrum will con-
tain many unnatural structures arising from overfitting the
noise in the data. If the data is obtained from Gaussian
distributed measurements and we insert the correct under-
lying � in Eq. (3), it leads to L� N�. Hence, the most
neutral reconstruction will satisfy L=N� ¼ 1, which we
impose as a constraint arising from prior knowledge. Our
likelihood probability thus reads
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P½Dj�; I� ¼ exp½�L� �ðL� N�Þ2�; (5)

where the limit � ! 1 is taken numerically. Note that
maximizing this expression alone is still ill defined, since
the N! � N� parameters �l are not yet uniquely fixed.

Hence, we continue by specifying the prior probability
P½�jI�, which acts as a regulator and will allow us to select
a unique Bayesian set of �l’s. The MEM utilizes the
Shanon-Jaynes entropy SSJ in its prior probability [4],
which is constructed from four axioms. Similarly, we
introduce our expression for P½�jI� / exp½S�, after
replacing two of these axioms.

Prior information is incorporated explicitly through a
function mð!lÞ ¼ ml, which, by definition, is the correct
spectral function in the absence of data [4]. It is usually
obtained through previous reconstructions with less accu-
rate data or from independent estimates. We begin the
construction of the functional S with the following:

Axiom I: subset independence. Let us consider two
different subsets �1 and �2 along the frequency axis. If
prior information imposes constraints on the spectrum �
within each of these subsets, then the result of the recon-
struction should not depend on treating these domains
separately or in a combined fashion S½�1; mð�1Þ� þ
S½�2; mð�2Þ� ¼ S½�1 [�2; mð�1 [�2Þ�: This relation
is satisfied if S is written as an integral over frequencies,

S /
Z

d!sð�ð!Þ; mð!Þ; !Þ: (6)

While this axiom coincides with the one used in the MEM,
we continue by introducing the following new one:

Axiom II: scale invariance. In general �ð!Þ does not
have to be a probability distribution. Indeed, depending on
the observable the spectrum is associated with, its scaling
can differ from 1=!. We hence require that the choice of
units for � and m shall not change the result of the
reconstruction; i.e., we must construct our prior probability
using ratios of �=m only,

S ¼ ~�
Z

d!sð�ð!Þ=mð!ÞÞ: (7)

Now that the integrand s does not carry a dimension, we
introduce the dimensionful hyperparameter ~� to also make
the argument of the exponential dimensionless.

Axiom III: smoothness of the reconstructed spectra.
The only certain information about the spectral function
is that it is a positive definite and smooth function. Hence,
we wish the prior functional to impose these traits on
the reconstructed spectrum even if no further prior infor-
mation is known; i.e., in the case of mð!Þ ¼ m0, a smooth
spectrum shall be chosen independently of m0.

The strategy towards this end relies on penalizing spec-
tra which deviate between two adjacent frequencies!1 and
!2. If changing the ratio rl ¼ �l=m0 at the two frequencies
does not change the values of D� beyond the errorbars,
then S should favor r1 ¼ r2. The penalty between the

case where the same value exists at both frequencies
r1 ¼ r2 ¼ r and the case where they differ by a small
amount r1 ¼ rð1þ �Þ, r2 ¼ rð1� �Þ, hence, has to be
independent of r and symmetric in whether r1 _ r2,

2sðrÞ � sðrð1þ �ÞÞ � sðrð1� �ÞÞ ¼ �2C2: (8)

This is precisely the discretized expression for the differ-
ential equation �r2s00ðrÞ ¼ C2, whose solution yields

S ¼ ~�
Z

d!

�
C0 � C1

�

m
þ C2 ln

�
�

m

��
: (9)

The remaining axiom is identical to the MEM case, since it
establishes the Bayesian meaning of mð!Þ.
Axiom IV: maximum at the prior. In the absence of data,

S must become maximal at � ¼ m. Conventionally, its
value at this point is chosen to vanish,

Sðr¼ 1Þ ¼ 0; S0ðr¼ 1Þ ¼ 0; S00ðr¼ 1Þ< 0: (10)

The two first conditions fix the constants C0, C1 and C2

up to an overall constant, which we absorb into the
hyperparameter � / ~�. The last condition forces � to be
positive. Our final result, hence, reads

S ¼ �
Z

d!

�
1� �

m
þ ln

�
�

m

��
: (11)

This new prior distribution is strictly concave (S � 0) and
exhibits a similar quadratic behavior around the maximum
� ¼ m as the Shanon-Jaynes entropy SSJ. Hence, the
uniqueness of its maximum can be established analogously
to the MEM [5]. In the case where �l, ml � 1=� or
�l � ml, their contribution to S and to the variation
�S=�� is not suppressed; thus, we avoid the asymptotic
flatness inherent in SSJ. To obtain a proper probability
density, we still need to normalize eS, which leads us to

P½�j�;m�¼eS
�YN!

i¼1

e��!ið��!iÞ���!imi�ð��!iÞ: (12)

By construction, our prior distribution contains the
positive hyperparameter �, which we need to treat in a
Bayesian fashion. In the MEM, several spectra �� for
different values of � are reconstructed and ultimately
averaged over [4], weighted by the values of the evidence
P½Dj�;m�. The calculation of the evidence relies however
on a Gaussian approximation, whose validity is not
guaranteed.
Here we take a different route [12] and integrate

out � explicitly from the joint probability distribution
P½�;D;�;m; I�; i.e., we take into account the influence
of all possible prior distributions in the resulting posterior
probability P½�jD;m; I� on which we base the reconstruc-
tion. As the prior information I entering Eq. (5) is inde-
pendent from the hyperparameter, we carry it implicitly for
the moment. Starting from the multiplication law for
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P½�;D;�;m� ¼ P½Dj�;�;m�P½�j�;m�P½�jm�P½m�
¼ P½�j�;D;m�P½�jD;m�P½Djm�P½m�;

we note that m and � are independent. The likelihood
P½Dj�;�;m� does not contain any knowledge on the
hyperparameters underlying the given �. Hence only
P½�j�;D;m�, P½�j�;m� and P½�� carry an � dependence.

Assuming no further knowledge, i.e (P½�� ¼ 1), we
integrate the joint probability with respect to � and arrive
at the �-independent

P½�jD;m; I� ¼ P½Dj�; I�
P½Djm; I�

Z
d�P½�j�;m�: (13)

In the above expression the I labels are restored, P½Dj�; I�
is given by Eq. (5), P½�j�;m� by Eq. (12), and P½Djm; I� is
an irrelevant constant. For large values of S, we approxi-
mate the integral over � through a next-to-leading order
resummation of logarithms, while for small S a numerical
evaluation is possible.

After integration, no dependence on � remains. The
presence of m is not problematic, for its constant values
do not influence the reconstruction result if � is properly
normalized. Hence, P½�jD;m; I� does not contain any
meaningful external parameters, and we can proceed to
find its maximum numerically. To this end we deploy
the quasi-Newton memory limited Broyden-Fletcher-
Goldfarb-Shanno (LBFGS) algorithm, which allows us to
approach �P½�jD;m; I�=�� ¼ 0 by varying each of the
N! parameters �l individually. An inversion of the Hessian
matrix at intermediate steps is not required, which leads to
a significant reduction in computational cost compared to
the usual Levenberg-Marquardt approach. Note that in
contrast to the MEM with SSJ, now without asymptotically
flat directions, we successfully locate the global extremum

of P½�jD;m; I� and do not need to stop the algorithm at an
artificial cutoff in step size.
One application is the static potential between two

heavy quarks, which is related to the spectral structure of
the rectangular Wilson loop Whðr; �Þ and possibly the
Wilson line correlator in Coulomb gauge Wjjðr; �Þ [7].

The extraction of such spectra with Kð!; �Þ ¼ e�!� has
been shown to pose a severe challenge to the MEM [10].
Here we benchmark our approach through reconstruc-

tion of known spectra from cutoff regularized (� ¼ 5�)
Euclidean correlators, calculated in hard thermal loop
(HTL) resummed perturbation theory [10]. Subsequently,
we attempt to extract from them the known HTL interquark
potential [13] by fitting the position and width of the
lowest- lying peak [7]. The ideal HTL data points are
perturbed by Gaussian noise with variance �2

i ¼ ð	DiÞ2,
leading to constant relative errors �D=D ¼ 	. In prepa-
ration for lattice QCD, we assume no prior knowledge on
the spectrum and supply a constant prior mð!Þ ¼ 1.
In Fig. 1 we present reconstructions [N! ¼ 1000, ! 2

½�126; 189� (left), N! ¼ 1200, ! 2 ½�15:7; 15:7� GeV
(right)] from mock data at T ¼ 2:33TC for qualitative
comparison. The reference MEM [9] (�MEM32) based on
N� ¼ 32 ideal data points [10] fails to reproduce even the
Lorentzian shape of the lowest peak in the HTL spectrum
(�HTL). �HTL

h contains a peak and a large background, both

of which our method is able to capture with N� ¼ 32 at
�D=D ¼ 10�4. In �HTL

jj a single peak is dominant for

which N� ¼ 32 at �D=D ¼ 10�2 suffices. To showcase
possible improvements for future lattice QCD studies, we
also present the results for N� ¼ 128 data points and
�D=D ¼ 10�5 (BR128-5).
As a quantitative check, we reproduce the known HTL

interquark potential from the lowest spectral peak. Our
method hence needs to yield the correct position ðRe½V�Þ
and width ðIm½V�Þ of a skewed Lorentzian. In the top panel
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FIG. 1 (color online). Wilson loop (left) and Wilson line correlator (right) spectra from HTL mock data [10] at r ¼ 0:066 fm (top)
and 0.264 fm (bottom). As reference we show the HTL spectra �HTL and the MEM �MEM32 [9] with extended search space Next ¼ 80
based on N� ¼ 32 ideal data points. Both peak and background in �HTL

h are captured using N� ¼ 32 and �D=D ¼ 10�4 (BR32-4),

while the single peak in �HTL
jj requires only �D=D ¼ 10�2 (BR32-2). BR128-5 shows the result for a still realistic scenario of

N� ¼ 128 with mock error �D=D ¼ 10�5.
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of Fig. 2 we show the real part (solid line) obtained from
the Wilson loop VhðrÞ (circle) and Wilson line correlators
VjjðrÞ (triangle). Error bars are estimated from three recon-

structions with different mock noise of equal strength.
With N� ¼ 32 the correct real part is reproduced with
10% and 1% accuracy, respectively; especially the strong
artificial rise in Re½Vh� observed in the MEM in Ref. [10]
is absent.

With our method it is also possible to reproduce the
width from the Wilson line correlators. To this end we
utilize N� ¼ 128 and �D=D ¼ 10�5, which is still realis-
tic in quenched lattice QCD. The resulting reconstruction
of Im½V�ðrÞ with sub 20% deviation is shown in the lower
panel of Fig. 2 (pentagon). (For N� ¼ 128 we only show
Im½Vjj�ðrÞ, since the background from cusp divergences in

�h [10] will necessitate even better data.)
With these limitations in mind, we apply our method to

the Wilson loop and Wilson lines in quenched lattice QCD
[7] at T ¼ 2:33TC (N� ¼ 32, 
 ¼ 7, a� ¼ 0:0039 fm,
� ¼ 4). The improved estimate in Fig. 3 for both Re½Vh�
and Re½Vjj� shows that, as expected at the small distances

treated here [14], their values lie close to the color singlet

free energies in Coulomb gauge Fð1Þ. While we do not
expect the width, i.e., Im½V� (bottom), to be captured
reliably yet at N� ¼ 32, it is interesting to note that its
values appear to be of the same order of magnitude as in the
HTL calculation at this temperature.

We have introduced a novel Bayesian approach to
spectral function reconstruction. It cures the conceptual
and practical issues affecting the MEM by introducing an
improved dimensionless prior distribution devoid of
asymptotically flat directions in Eq. (11). In the case of a
constant prior function mð!Þ ¼ m0 and normalization of
�, no external parameter needs to be adjusted, since we

integrate out explicitly the hyperparameter � as shown in
Eq. (13). Combined with the LBFGS optimizer algorithm,
which varies each of the individual N! parameters �l, we
achieve a significant improvement in the reconstruction of
spectra as demonstrated in Figs. 1 and 2, enabling in turn a
reliable determination of the T > 0 heavy-quark potential
(Fig. 3). Hence we look forward to further applications in
lattice QCD and beyond.
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