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We study nonequilibrium thermodynamics of complex information flows induced by interactions

between multiple fluctuating systems. Characterizing nonequilibrium dynamics by causal networks

(i.e., Bayesian networks), we obtain novel generalizations of the second law of thermodynamics and

the fluctuation theorem, which include an informational quantity characterized by the topology of the

causal network. Our result implies that the entropy production in a single system in the presence of

multiple other systems is bounded by the information flow between these systems. We demonstrate our

general result by a simple model of biochemical adaptation.
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Introduction.—Nonequilibrium equalities for small
thermodynamic systems such as molecular motors have
been intensively investigated in the last two decades [1,2].
The second law of thermodynamics can be derived from
the Jarzynski equality [3] and the fluctuation theorems
(FTs) [4–8]. The second law is expressed in terms of the
ensemble average of the entropy production �,

h�i � 0; (1)

where h. . .i describes the ensemble average. We note that�
reduces to the difference in the free-energy change �F
and the work W performed on the system such that
� ¼ �ðW � �FÞ, when the system is attached to a single
heat bath with inverse temperature �, and the initial and
final states are in thermal equilibrium.

On the other hand, in the presence of feedback control
by Maxwell’s demon [9–11], the second law seems to be
violated; i.e., h�i can be negative. For such cases, the
second law has been generalized as

h�i � h�Ii; (2)

where h�Ii is the mutual information that is exchanged
between the system and the demon [12,13]. Such a
Maxwell’s demon has been experimentally demonstrated
with a colloidal particle [14]. While the relationship
between information and thermodynamics has been studied
in several simple setups with the demon [15–53], the gen-
eral theory has been elusive for more complex cases in
which multiple systems exchange information many times.

In this Letter, we derive a novel nonequilibrium equality
in the presence of complex information flows between
multiple stochastic systems. Our result involves a new
informational term that is characterized by the topology
of the causal structure of the dynamics. The informational
quantity consists of the initial correlation between the
target system and other systems, the information transfer
from the system to others during the dynamics, and the
final correlation between them. Our result can reproduce

inequality (2) for special cases. In order to describe
nonequilibrium dynamics of multiple systems, we use
Bayesian networks (BNs) [54] that topologically represent
the causal structure of the dynamics.
Our theory is applicable to quite a broad class of non-

equilibrium dynamics such as an information transfer
between multiple Brownian particles and information pro-
cessing in autonomous nanomachines. We illustrate our
result by a chemical model of biological adaptation with
time-delayed feedback. Our result implies that information
processing plays a crucial role in biochemical reactions.
Bayesian networks.—First, we briefly discuss the basic

concepts of BNs [see also Fig. 1(a)]. Let A ¼ fajjj ¼
1; 2; . . . ; NAg be the set of random variables that are asso-
ciated with the nodes of a BN, where NA is the number of
the nodes. When an edge aj0 ! aj exists, there is a causal

relationship from aj0 to aj, where we say that aj0 is a parent

of aj. We denote by paðajÞ the set of parents of aj. Here,

the order of a1, a2; . . . is determined by the causal rela-
tionship in the BN such that aj cannot be a parent of aj0 if

j0 < j. This order is referred to as the topological ordering.
We characterize stochastic dynamics in the BN by the
conditional probability pðajjaj�1; . . . ; a1Þ ¼ pðajjpaðajÞÞ
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FIG. 1 (color online). (a) Schematic of a BN. (b) Stochastic
dynamics of system X under the influence of other systems.

PRL 111, 180603 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

1 NOVEMBER 2013

0031-9007=13=111(18)=180603(6) 180603-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.111.180603


that describes the probability of aj under the condition of a

particular realization of paðajÞ. We write pðajj;Þ ¼ pðajÞ,
where ; is the empty set. Because of the chain rule in the
probability theory, we obtain the joint probability distribu-
tion of the all random variables [54],

pðAÞ ¼ YNA

j¼1

pðajjpaðajÞÞ: (3)

The ensemble average of the arbitrary function gðAÞ is
defined as hgi � P

ApðAÞgðAÞ.
We next describe how we use BNs to describe stochastic

dynamics [see also Fig. 1(b)]. We consider a situation in
which system X interacts with other systems. The proba-
bility distribution of all the systems for the entire process is
given by Eq. (3), where aj corresponds to a state of a

system at a particular time. A consists of all states in
the time evolution of both system X and other systems.

We also use the notation X to describe the time evolution
of system X; we write X � fxkjk ¼ 1; 2; . . . ; Ng (� A),
where xk is the state of system X at time k, and
� is the symbol of the subset. We assume that xk is a
parent of xkþ1. We also assume that xk cannot be a parent of
xk0 for k

0 � kþ 1. We note that the time evolution of X is
characterized by the chain x1 ! x2 ! � � � ! xN.

For instance, Fig. 2(a) shows an expansion of a single-
molecule gas, which can be described by the BN shown in
Fig. 2(b). This BN shows the time evolution such that
pðx1; x2Þ ¼ pðx2jx1Þpðx1Þ, where x1 and x2, respectively,
describe the initial and final positions of the particle.
In Fig. 2(c), we illustrate the Szilard engine [10] that
is a standard model of Maxwell’s demon. Figure 2(d)
shows the corresponding BN, where m1 describes a
memory state that is correlated with x1. This BN shows
the time evolution of the total system pðx1; x2; m1Þ ¼
pðx2jx1; m1Þpðm1jx1Þpðx1Þ.

Entropy production and mutual information.—We
introduce the entropy production in stochastic thermody-
namics in terms of the BN. We assume that system X is
coupled to heat baths with inverse temperatures �� (� ¼
1; 2; . . . ; nbath). Let Q� be the heat absorbed by X from the
�th bath. Because of the standard definition in stochastic
thermodynamics [2], the entropy production in X is given
by � � �sbath þ lnpðx1Þ � lnpðxNÞ, where x1 (xN) is the
initial (final) state of X and �sbath � �P

���Q� is the
entropy change in the baths. Let �skþ1

bath be the entropy

change in the baths from time k to kþ 1 such that�sbath ¼P
N�1
k¼1 �skþ1

bath . In quite a broad class of nonequilibrium

dynamics, including multidimensional Langevin dynamics
(see the Supplemental Material [55]), �skþ1

bath satisfies the

detailed FT [7,8],

�skþ1
bath � ln

pðxkþ1jxk;Bkþ1Þ
pBðxkjxkþ1;Bkþ1Þ ; (4)

where Bkþ1 is defined as Bkþ1 � paðxkþ1Þ n fxkg with n
indicating the relative complement of two sets. Bkþ1

means the set of random variables which affect the time
evolution ofX from states xk to xkþ1 [see also Fig. 1(b)]. pB

describes the probability distribution of backward paths.
We next introduce mutual information that plays a cru-

cial role in this study. Let A1, A2, and A3 be arbitrary
sets of random variables. We define IðA1:A2jA3Þ�
lnpðA1;A2jA3Þ� lnpðA1jA3Þ� lnpðA2jA3Þ, where
we write IðA1:A2jA3 ¼ ;Þ ¼ IðA1:A2Þ. Its ensemble
average hIðA1:A2jA3Þi is the mutual information
between A1 and A2 under the condition of A3.
Main result.—In order to discuss the main result, we

introduce set C � fa1; a2; . . . ; aJg n X, where aJ is chosen
to satisfy aJ ¼ xN [see also Fig. 3(a)]. Here, C is the history
of the other systems that can affect the final state xN . We
denote the elements of C as C ¼ fcljl ¼ 1; 2; . . . ; N0g, where
c1, c2; . . . are in the topological ordering.
We now state the main result of this Letter. In the

foregoing setup, we have a new generalization of the
integral fluctuation theorem (IFT),

FIG. 2 (color online). (a) Time evolution of a single-molecule
gas without feedback control. (b) BN corresponding to (a).
(c) The Szilard engine with feedback control by a memory
device. (d) BN corresponding to (c).

FIG. 3 (color online). (a) Schematic of C and paðx1Þ. C is the
history of other systems that can affect the final state xN . paðx1Þ
describes the variables correlated with the initial state x1. (b) An
example of a BN that describes three-body interactions.
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hexp½��þ��i ¼ 1: (5)

Here, the key quantity � is the informational quantity
characterized by the topology of the BN,

� � Ifin � Iini �
XN0

l¼1

Iltr; (6)

Ifin � IðxN:CÞ; (7)

Iini � Iðx1:paðx1ÞÞ; (8)

Iltr � Iðcl:paXðclÞjCl�1Þ; (9)

where Cl�1 � fcl0 jl0 ¼ 1; 2; . . . ; l� 1g and paXðajÞ �
paðajÞ \ X, with \ indicating the intersection. Here, Iini
characterizes the initial correlation between X and the
other systems, while Ifin characterizes the final correlation
that remains at the end of the dynamics. On the other hand,
Iltr is the transfer entropy [56] that characterizes the infor-
mation transfer into cl from X during the dynamics (see
the Supplemental Material [55]). For example, in the case
of Fig. 3(b), we obtain Ifin ¼ Iðx3:fy1; z1; z2; y2gÞ, Iini ¼
Iðx1:y1Þ, I1tr ¼ I2tr ¼ 0, I3tr ¼ Iðz2:x1jy1; z1Þ, and I4tr ¼
Iðy2:x2jy1; z1; z2Þ. We will discuss the proof of Eq. (5) later.

By using the Jensen inequality for convex functions,
i.e., hexp½g�i � exp½hgi�, we obtain

h�i � hIfini � hIinii �
XN0

l¼1

hIltri; (10)

which is a novel generalization of the second law of
thermodynamics for subsystem X in the presence of
complex information flows.

In the following, we illustrate that our main result (5)
can reproduce known nonequilibrium relations for special
cases in a unified way, and moreover, can lead to new
generalizations of the IFT.

Example 1.—We consider the Markov chain shown in
Fig. 4(a). We have C ¼ ; and paðx1Þ ¼ ;, and therefore
Ifin ¼ 0, Iini ¼ 0, and � ¼ 0. We then reproduce the con-
ventional IFT, hexp½���i¼1, which leads to inequality (1).

Example 2.—We next consider a system with feedback
control shown in Fig. 4(b), where m1 describes a state of
the memory. State x1 is measured by the memory, and the
outcome m1 is used for the feedback control. We have
C ¼ fm1g and paðx1Þ ¼ ;, and therefore Ifin ¼ IðxN:m1Þ,
Iini ¼ 0, I1tr ¼ Iðx1:m1Þ, and � ¼ IðxN:m1Þ � Iðx1:m1Þ.
We then reproduce a generalized IFT obtained in
Ref. [13], hexp½��þ�I�i ¼ 1, which leads to inequality
(2). We note that in the case of the discrete repeated
feedback, a previous result [24] can be derived from
Eqs. (5) and (10) (see the Supplemental Material [55]).

Example 3.—We next consider the two-dimensional
Langevin equation that describes an interaction between
two Brownian particles,

�x dx

dt
ðtÞ ¼ fxðxðtÞ; yðtÞÞþ �xðtÞ; (11)

�y dy

dt
ðtÞ ¼ fyðxðtÞ; yðtÞÞþ �yðtÞ; (12)

where t is time, �x and �y are friction coefficients, fx

and fy are mechanical forces, and �x and �y are indepen-
dent white-Gaussian noises with variances 2�x=�x and
2�y=�y, respectively. Let �t be an infinitesimal time
interval. We discretize the dynamics as xk � xðt ¼ k�tÞ
and yk � yðt ¼ k�tÞ, and introduce the corresponding BN
by Fig. 4(c), where system X corresponds to one particle
with coordinate xðtÞ. We then have C ¼ fy1; . . . ; yN�1g and
paðx1Þ ¼ ;, and therefore, Ifin ¼ IðxN:fy1; . . . ; yN�1gÞ,
Iini¼0, Iltr ¼ Iðxl�1:yljyl�1; . . . ; y1Þ, and �¼ Ifin �P

N�1
l¼1 Iltr. We note that �sbath ¼ ��xQx, where Qx is the

heat absorbed by system X from the bath [57] (see the
Supplemental Material for details [55]).
In this case, inequality (10) implies that the entropy

production of one particle is bounded by the information
flow into the other particle and the final correlation with it.
As shown in the Supplemental Material [55], such a result
is valid for multidimensional cases, in general, which
enables us to characterize the entropy production in one
particle that interacts with multiple particles in terms of
information exchanges between them. We note that the
entropy production in a single particle of a multidimen-
sional Langevin system is closely related to experiments on
the role of the hidden degrees of freedom [58,59].
Model of biological adaptation.—We next discuss

an application of our general result to a biochemical
system. The significance of information processing in
biochemical networks has been presented, for example,
in Refs. [60–62]. In particular, feedback control plays a
key role in biological adaptations such as bacterial chemo-
taxis [63,64]. We show that the free-energy difference is
bounded by an informational quantity in the presence of a

FIG. 4. (a) BN corresponding to a simple Markov chain.
(b) BN corresponding to feedback control. (c) BN corresponding
to two Brownian particles.
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chemical feedback loop in a simple model of adaptation
with the time-delay effect [65].

The model is characterized by a negative feedback loop
between two systems: output system O and memory sys-
temM [see Fig. 5(a)]. We assume that each ofO andM has
a binary state described by 0 or 1. This model is described
by the following master equations:

dpX
0

dt
ðtÞ ¼ �!X

0;1ðtÞpX
0 ðtÞ þ!X

1;0ðtÞpX
1 ðtÞ; (13)

dpX
1

dt
ðtÞ ¼ �!X

1;0ðtÞpX
1 ðtÞ þ!X

0;1ðtÞpX
0 ðtÞ; (14)

where pX
0 ðtÞ and pX

1 ðtÞ are, respectively, the probabilities of
the states 0 and 1 with X ¼ O, M at time t. The transition
rate !X

�;� (�, � ¼ 0; 1) is assumed to be

!X
�;�ðtÞ ¼ 1

�X
expf��X½�X

�� � FX
�ðtÞ�g; (15)

where �X is a time constant, �X is the inverse temperature
of a heat bath coupled to X, FX

�ðtÞ is the effective free

energy of the state� at time t,�X
�� is a barrier that satisfies

�X
�� ¼ �X

��. This transition rate is well established in

chemical reaction models [1].
Let ok (mk) be the state of O (M) at time t ¼ k	

(t ¼ k	� 	0), where 	 is the time interval with 	 > 	0.
The feedback loop betweenO andM is described by FM

� ðtÞ
[FO

�ðtÞ] that depends on ok (mk) [see also Fig. 5(c)]; we

assume that FM
� ðtÞ depends on ok at time k	� 	0 � t �

ðkþ 1Þ	� 	0, and that FO
�ðtÞ depends on mkþ1 and mk at

time k	 � t � ðkþ 1Þ	. The mk dependence of FO
�ðtÞ

describes the effect of time-delayed feedback.

By applying Eqs. (7)–(10) to the BN in Fig. 5(b), we
obtain two inequalities in the time evolution from fo1; m1g
to fo2; m2g,

h��MQMi � hlnpðo1; m2Þi � hlnpðo1; m1Þi; (16)

h��OQOi � hlnpðo2; m1; m2Þi � hlnpðo1; m1; m2Þi; (17)

whereQX is equal to the effective free-energy difference in
this system (see the Supplemental Material [55]). The
right-hand sides of Eqs. (16) and (17) are the changes in
the two-body and three-body Shannon entropies, respec-
tively. This three-body Shannon entropy includes the states
of different times m1 and m2. This is a crucial difference
between the conventional thermodynamics and our result.
We numerically illustrate the validity of Eq. (17) in Fig. 6.
We stress that these bounds are calculated from the proba-
bility distribution that can be experimentally measured in
principle [60–62].
Derivation of the main result.—From the definition of�

in Eqs. (6)–(9), we obtain

� ¼ ln

�
pðxN; CÞpðx1Þ

pðxNÞpðCÞpðx1jpaðx1ÞÞ
YN0

l¼1

pðcljCl�1Þ
pðcljpaXðclÞ; Cl�1Þ

�

¼ ln
pðx1ÞpðxN; CÞ

pðxNÞpðx1jpaðx1ÞÞ
Q

N0
l¼1 pðcljpaðclÞÞ

¼ ln
pðx1ÞpðxN; CÞQN

k¼2 pðxkjpaðxkÞÞ
pðxNÞpðX; CÞ : (18)

We then use mathematical properties of BNs [54],

pðcljpaXðclÞ;Cl�1Þ¼pðcljpaðclÞÞ and pðX;CÞ¼Q
N
k¼1

Q
N0
l¼1

pðxkjpaðxkÞÞpðcljpaðclÞÞ (see the Supplemental Material
[55]). From Eqs. (3), (4), and (18), we arrive at the main
result (5),

FIG. 5 (color online). (a) Feedback loop of a time-delayed
chemical reaction model. (b) BN that describes our model.
(c) The free-energy levels and the interactions between output
O and memory M. For instance, FO

�ðtÞ at time 	 � t � 2	

depends on m1 and m2.

FIG. 6 (color online). Numerical illustration of the
non-negativity of h�i�h�i¼ h��OQOiþhlnpðo1;m1;m2Þi�
hlnpðo2;m1;m2Þi. We set the initial states to pðo1; m1Þ ¼
pðo1Þpðm1Þ. The amount of h�i � h�i is close to 0 when the
initial states are close to the stationary state of this system.
The parameter set is noted in the Supplemental Material [55].
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hexp½��þ��i¼X

A

pðDjC;XÞY
N

k¼2

pBðxk�1jxk;BkÞpðxN;CÞ

¼1; (19)

where D � A n ðC [ XÞ. Here, we used Bk � C (k ¼
2; . . . ; N) and the normalization of the probability.

Conclusion.—In general causal networks, we have
derived a novel generalization of the IFT [Eq. (5)]. We
have obtained a generalized second law of thermo-
dynamics (10), which sets a fundamental bound on the
entropy production of a single system in the presence of
multiple other systems, where the exchanged information
between these systems plays a crucial role.

We are grateful to M. Sano, H. Hayakawa, M. L.
Rosinberg, J.M. Horowitz, K. Kanazawa, and H. Tasaki
for valuable comments. We acknowledge YITP at Kyoto
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