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We establish a general mechanism for highly efficient quantum transport through finite, disordered 3D
networks. It relies on the interplay of disorder with centrosymmetry and a dominant doublet spectral
structure and can be controlled by the proper tuning of only coarse-grained quantities. Photosynthetic light
harvesting complexes are discussed as potential biological incarnations of this design principle.
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In a variety of fields, ranging from quantum information
[1] to solar cell physics [2], the efficient transport of quanta
is of paramount importance. In realistic setups, however,
one typically encounters systems which are complex in
nature and only allow for a limited degree of control.
Therefore, it is relevant to understand which general con-
ditions are required to exploit fundamental principles of
quantum mechanics to enhance transport in complex sys-
tems. At the present, this question is still widely open.

Common wisdom suggests that quantum interference
can enhance transport across perfectly periodic potentials
[3,4], while it tends to suppress transport in disordered
systems [5,6]. In general, multipath quantum interference
leads to erratic, large scale fluctuations of transmission
probabilities when boundary conditions or other system
parameters are slightly changed [7—11]. These fluctuations
are often indicative of the strong, nonlinear coupling of few
degrees of freedom, as it abounds in heavy nuclei [7],
ultracold many-particle dynamics [12], strongly perturbed
Rydberg systems [13—15], billiard geometries for photons
[16] and electrons [17], strongly driven quantum systems
[18], and in large molecules [19-21]. Often, devices which
transport quanta tend to avoid these fluctuations; however,
one may wonder whether they can be harvested.

Here, we seek to identify design principles for the
properties of disordered Hamiltonians that, supported by
large scale fluctuations, may generate quantum-enhanced
transport. These design principles are statistically robust,
in the sense that they are “implementable’” by controlling
only few coarse-grained parameters. We show that a col-
lection of random Hamiltonians amended by only two
additional constraints features high probabilities for rapid,
near-to-perfect single-excitation transport across the
abstract networks they can be associated with. The proba-
bility distributions of transfer times and efficiencies are
fully controlled by the networks’ electronic density of
states, some average coupling matrix element, and the
complex size (in terms of number of constituents), which
are easily controllable, e.g., in macromolecular design
[22-25]. As a potential application, we discuss the possible
role of our findings for efficient light harvesting in
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photosynthetic complexes. While it is not our intention to
perform a detailed analysis of these complex biological
functional units, we rather wish to scrutinize the introduced
design principles in the light of available structure data.

As a working model, we consider the coherent transport
of one excitation across a disordered 3D network of N sites.
Hilbert space is spanned by the basis states |i) which
represent those states where the excitation is fully localized
at the network’s site i. In order to formulate a quantitative,
statistical theory, we generate different realizations of dis-
order by sampling over N X N random Hamiltonians H
extracted from the Gaussian orthogonal ensemble (GOE)
[26]. The matrix entries H; ; encode the couplings between
sites i and j. For each realization, input |in) and output |out)
states are defined by those sites with the weakest coupling
V = min,,;|H, |, since we wish to understand the (ideally
constructive) impact of the additional, intermediate sites of
the network on the effective coupling between [in) and
|out). Our figure of merit is the transfer efficiency

Py = max [out, p)P, 1$O) = lin). ()

which quantifies a given random network’s performance in
terms of excitation transport. Py is gauged against the
direct coupling V between [in) and |out), in the absence
of all intermediate sites, through the definition of the
associated benchmark time scale Tx = 7/2V [27,28]
(with respect to which time and energy will be rescaled
in all subsequent statistical analysis, when sampling over
different realizations of H).

Earlier studies of coupled dipoles suggested that a cen-
trosymmetric structure of the Hamiltonian with respect to
lin) and |out) is a valuable ingredient for perfect-state
transfer in dipole-dipole networks [29-31]. This symmetry
is defined by JH = HJ and |in) = J|out) [32], where J is
the exchange matrix J;; = 6, y—;+1 [33]. However, for
GOE Hamiltonians on which centrosymmetry is imposed,
the transfer efficiencies are still rather broadly distributed,
implying that centrosymmetry alone is not sufficient for
efficient state transfer. We need to identify an additional
structural element which guarantees robustness, in the
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sense that the transfer efficiency must not depend strongly
on the specific conformation of the intermediate sites.
Such a feature is also of obvious relevance for our model’s
applicability to real light harvesting complexes, which
continuously undergo conformational changes (whether
noisy or deterministic) on the macromolecular scale.

Intuitively, the structural stability of efficient excitation
transfer from |in) to |out) is guaranteed if both states are
coupled through a dominant tunneling doublet [34]. The sole
role of the intermediate states is then to collectively amend
the effective tunneling coupling by an energy shift As. If As,
which strongly fluctuates under variations of the network
conformation (induced by the coupling to some background
degrees of freedom, e.g., vibrational modes of macromolec-
ular structures [35]), has the proper sign, this can lead to a
dramatic enhancement of the transfer efficiency [36,37].
Such collective shifts induced by the coupling to random
states have been investigated in the context of chaos-assisted
tunneling [36,38—40] and will enter as the key ingredient of
the subsequent analytical description of our problem.

Given the centrosymmetry of H, it can be cast, through
an orthogonal transformation to the eigenbasis of J, into
the block diagonal representation [33]

_(HY 0
H>—(0 H,) 2)

In this new form, both H* and H~ are N/2 X N/2 GOE
matrices, i.e., the Hfj stem from a Gaussian distribution
with zero mean and variance (1 + §;;)2¢%/N.

Since two of the eigenvectors of J have the form |*=) =
(1/4/2)(lin) = |out)), we now additionally assume (see
above) that |[+) and |—) form a dominant doublet, close
to eigenstates |+) and |=) of H* and H, respectively,
[41]. It is then useful to write the Hamiltonian (2) as

E+V (V7
_|1vY  H
H= " E-V (V|| ©)
V™) Hg,

which makes the definition of rows and columns which
relate to |[+) and | —) explicit. From the definition of | %), it
is easy to see that (*|H|*+) = E = V. | V=) encodes the
(Gaussian distributed) couplings of the dominant doublet
states |*) to the remainder of the system.

Because of the dominant doublet assumption
[{(F, +)|> > a = 1, the norm || V*|| of the coupling is
small and, under this condition, perturbation theory guar-
antees that £ = V in Eq. (3) are eigenvalues of H, up to
some perturbative correction s=. The explicit expression
for the transfer efficiency is then dominated by those terms
associated with |*), leading to the estimate

P, > max 2a—1 e~ iE+VEsY) _ pit E=VEsT)2 (4)

t€[0.T)

where s* = Y .(KV=, ¢ ) /E =V — ¢f) and ;) and
e; are the eigenvectors and eigenvalues of H_,. From
Eq. (4), it is clear that the efficiency is large Py > 2a —
1, if the first passage time [42] t = 7/|2V + As|, As =
st —s7, is smaller than T, with effective tunneling rate
|2V + As|. All realizations with T/t > 1 exhibit efficient
transport faster than the direct coupling between |in) and
|out). Note that the dominant doublet assumption alone
does not guarantee this latter feature; rather, it is a funda-
mental consequence of the strong fluctuations of As that
arise due to the disorder inscribed into || V|| and HZ,.
This may be induced, for example, by the coupling of some
complex background degrees of freedom, such as vibra-
tional modes [35]. Only a sufficiently broad distribution of
As guarantees that fast efficient transfer can always be
achieved, even if the direct coupling between the input
and output sites tends to zero [38]. Thus, despite being
weakly coupled, the presence of the intermediate, random
sites of the network represented by H, is absolutely
crucial to achieve efficient transport.

For fixed E and V, the distribution of As was shown to
be a Cauchy distribution (for sufficiently large N) in
Refs. [36,37,39]. In our present problem, £ and V are
themselves stochastic variables and, therefore, should be
averaged over. Since the integrations over £ and V are
dominated by their mean values, given by V =
272 'N~¥2 and E = 0, a lengthy but straightforward
calculation shows that the probability distribution of
T2V + As)/m = T/t is given by

TR 1 So So
P\—"== x) —\2 it 3 z)
t m\sy +(1+x0+x)° 557+ (1+x—x)
®)
with so = (I'VIPNe(1 — 2/N)'/2 /47 é?), Xg =
(1'VII?/2€?), and || V||? the expectation value of || V=||?
for all realizations where the dominant doublet assumption
holds.

The distribution (5) depends on only two coarse-grained
parameters: £ characterizes the spectral density of the eigen-

states of H}, and H_,, while || V|> measures the average
coupling strength of the dominant doublet to these states. It
therefore cannot be emphasized enough that, within the
picture here elaborated, the transport properties of the prob-
lem do not depend on the specificities of the Hamiltonian or
on the intermediate electronic states of the network.

To validate our theoretical model by numerical simula-
tions, we generate many GOE Hamiltonians with the addi-
tional constraint of centrosymmetry with respect to |in) and
|out). For each of these Hamiltonians, the existence of a
dominant doublet is assessed by inspection of its eigenvec-
tors and by verifying that, for some |*), the condition
[(£, +)|?> > « holds. This postselection defines the statisti-
cal ensemble which we expect to satisfy (5). Py is then
obtained by numerical propagation of the quantum dynamics
generated by the Hamiltonian, by virtue of Eq. (1). The
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associated transfer time is extracted in two independent
ways, due to the following subtlety: A random Hamiltonian
of type (3) will generate quasiperiodic dynamics, such that
subsequent maxima of [(out, ¢(¢))|*> may slightly differ in
magnitude. Direct propagation of |¢(0)) can therefore result
in values of Py slightly larger than the lower bound of
Eq. (4), if Tp accommodates more than one maximum of
[{out, ¢(¢))|. This will happen at larger values of #; hence,
larger values of x will be suppressed. The strong fluctuations
of the dashed line in Fig. 1 are an expression thereof. An
alternative way to extract ¢ is by direct inspection of the
spectrum and by using the fact that Tgx/r= |2V +
As|/|2V| [see Eq. (4)]. This method is immune against
tiny corrections to the bound (4) and yields perfect agreement
with Eq. (5), as shown in Fig. 1.

No free parameters are involved in this plot: The values

£=2, =095, and || V|> =0.311962 which enter
Eq. (5) are either given a priori or extracted from
the statistics of the numerically generated sample
Hamiltonians. Clearly, the majority of realizations has ¢
smaller than the time scale set by the direct coupling V
between |in) and |out). The fat algebraic tail of the Cauchy
distribution for t << Ty guarantees that realizations with
very fast transport are abundant in the sense that they are
not exponentially unlikely.

For fixed a = 0.95, our model predicts efficiencies
larger than Py > 2a — 1 = 0.9. This is indeed observed
in the simulations. The inset in Fig. 1 shows the probability
density of the transfer efficiency, which is sharply peaked
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FIG. 1. Comparison of the numerically inferred distributions

of inverse transfer times Tx/t (dashed and dash-dotted lines) to
the prediction (5) (solid line) for density of states & = 2, N = 10
network sites, with the dominant doublet condition a = 0.95.
V> =0.311962 is extracted from the numerical sample.
The dashed line is derived from numerical propagation of the
initial state |¢(0)) in the time window [0, 1.7T%], via Eq. (1),
while the dash-dotted line is inferred from the spectrum of the
Hamiltonian, via Tr/t = |2V + As|/[2V] [see Eq. (4)]. Inset:
Histograms of the transfer efficiencies Py for three different
ensembles ¢ and N as above. Constraining the ensemble from
GOE to centrosymmetric and to centrosymmetric with the
dominant doublet condition o = 0.95 dramatically enhances
the average efficiencies.

above Py > 0.9 (indicated by the arrow). Comparison, in
the same figure, with the efficiency distributions for cen-
trosymmetric GOE matrices without the doublet constraint
and for general GOE matrices, respectively, shows that in
both cases, the average efficiency is significantly lower
than for those centrosymmetric Hamiltonians which ex-
hibit the additional design element of a dominant doublet.

A remarkable asset of this transport mechanism is its
robustness under different realizations of disorder, which,
in the context of networks, refers to different configura-
tions of the intermediate sites [represented by the random
matrices H,, in Eq. (3)]. In the light of the recent debate
on the potential role and unexpected robustness of quantum
coherence in photosynthetic harvesting of the sunlight’s
energy [35], one may wonder whether the proposed design
principles are implemented by nature. Indeed, some of the
light harvesting complexes which are hardwired in bacteria
or plants, such as the Fenna-Matthews-Olson (FMO) com-
plex of green sulfur bacteria [43—45], exhibit an apparently
disordered, networklike structure and appear to be opti-
mized for efficient transport.

It is therefore suggestive to test the hypothesis that
centrosymmetry and the dominant doublet are compatible
with the available structure data [43,44]. For this purpose,
we fix the spatial position of the FMO’s constituent
bacteriochlorophyll-a (BChla) molecules as given in the
literature [43] (see Table I of the Supplemental Material
[46]) and only allow the orientation of the dipoles associated
with each BChla to vary. Furthermore, we neglect on-site
energy shifts induced by the coupling to background degrees
of freedom; i.e., all on-site energies are assumed to be
identical. Apart from a possible limitation of the maximally
achievable transfer efficiencies to values smaller than 100%
(similar to the limitation of the maximum transfer amplitude
by the bias in an asymmetric double-well potential), this does
not affect the central features of our transport scenario [31].

Given the spatial positions of the dipoles, the intersite
dipole-dipole coupling matrix elements H; ; are determined
by their relative orientations [44] (see Table II of the
Supplemental Material [46]). To certify the relevance of
our dominant doublet picture, we now ask the question of
how close the documented FMO conformations are to opti-
mal conformations in the above sense. To give an answer to
this question, we use the tabulated FMO data to seed a genetic
algorithm with the transfer efficiency (1) as a target function
and only allow for variations of the intermediate sites’ dipole
orientations (variations of the coupling to and between the
intermediate sites generate the nontrivial and crucial statis-
tics of the level shifts As in the underlying chaos-assisted
tunneling scenario). We then correlate the thus achieved
optimal transfer efficiencies with the optimal networks’
centrosymmetry quantifiers [31] € = (1/N)ming||H —
J~'HJ|| (where the minimization runs over all permutations
of the intermediate network sites 2,..., N — 1, and the
Hilbert-Schmidt norm [47] is employed) and the dominant
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doublet strengths « (defined as the minimum of [(+, +)|?
and |(=, —)|?). These results are benchmarked against
optimization results seeded by random orientations of the
dipoles and illustrated in Fig. 2. Filled blue circles represent
the results delivered by the genetic algorithm when launched
in the vicinity of the documented FMO structure—which
itself exhibits (poor) efficiency, doublet strength, and centro-
symmetry as represented by the red filled circles in both
plots. The synchronous trend towards significantly enhanced
efficiencies, centrosymmetries, and doublet strengths is
unambiguous and in stark contrast to the benchmark en-
semble represented by crosses in the plot, which also reflects
some correlation between efficiency, centrosymmetry, and
doublet strength, but lacks the essentially deterministic
attraction towards optimal performance which manifests in
the FMO’s vicinity.

On top of this evolutionary attraction towards optimal
performance in the FMO neighborhood, in response to our
above question, the dipole orientations which result from
evolutionary optimization are indeed very close to the dipole
orientations as given by the experimental data: Fig. 3 depicts
the probability densities for the relative positions of the
optimal dipole orientations at each of the intermediate
BChla sites, in (¢, 6) spherical coordinates with respect to
the tabulated orientations which define the origin of each
plot. In the worst case, the average orientation of dipole 4
deviates by less than 20% from the experimental data. All the
other optimized dipole orientations deviate by less than 7%.
Therefore, the documented FMO dipole structure has a
design that is close to optimal with respect to the abstract
design principles which we introduced above.

In summary, we described a general mechanism that
gives rise to fast and near-to-perfect quantum transport in
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FIG. 2. Scatter plots of transfer efficiency Py versus dominant
doublet strength @ and centrosymmetry € (inset). Evolutionary
optimization as achieved by a genetic algorithm is indicated by
the empty circles, upon the seeding of the algorithm with the
documented FMO structure (indicated by an arrow and a black
circle and listed in Tables I and II of the Supplemental Material
[43,44,46]). The unambiguous and synchronous attraction to-
wards more efficient, centrosymmetric dipole orientations with
large doublet strengths is to be compared to a benchmark
ensemble generated by the algorithm when seeded with random-
ized dipole orientations (dots).

finite, 3D disordered systems. The mechanism rests on two
crucial design principles: The centrosymmetry of the
underlying Hamiltonian, which guarantees a natural block
diagonal representation, and the existence of a dominant
doublet that ensures that the coupling to random states
(provided, e.g., by the intermediate sites of a molecular
network) can efficiently assist the transport in a robust way.
The statistics of the transfer efficiencies and times, as
shown in Fig. 1, then only depend on the intermediate
network sites’ density of states & and on the average

coupling strength || V||? of the in- and output sites to the
network. While the former can be controlled, e.g., by the
packing of the intermediate network sites, the latter should
be easily controllable by fixing—e.g., through a protein
scaffold [48]—their average distance to the input and out-
put. Within this perspective, robust and efficient transport
across complex quantum networks may be achieved by
optimally designing not one single network conformation
but rather a suitable statistical distribution, fixed by the
density of states and some average coupling strength alone.
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FIG. 3 (color online). (Linearly) gray scaled probability den-
sity of the genetically optimized FMO dipole orientations, in
spherical coordinates (¢, €) (in radian). Dipoles 1, 2, 4, 5, 6, and
7 are listed from left to right and top to bottom, and the
experimental dipole orientation extracted from Table II (of the
Supplemental Material [46]) defines the origin of each plot.
Dipoles 8 (input) and 3 (output) are not shown, since we keep
their orientations fixed during optimization.
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