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We show that the entanglement between the internal (spin) and external (position) degrees of freedom

of a qubit in a random (dynamically disordered) one-dimensional discrete time quantum random walk

(QRW) achieves its maximal possible value asymptotically in the number of steps, outperforming the

entanglement attained by using ordered QRW. The disorder is modeled by introducing an extra random

aspect to QRW, a classical coin that randomly dictates which quantum coin drives the system’s time

evolution. We also show that maximal entanglement is achieved independently of the initial state of the

walker, study the number of steps the system must move to be within a small fixed neighborhood of its

asymptotic limit, and propose two experiments where these ideas can be tested.
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Imagine we have a qubit, a quantum particle that in
addition to its external degrees of freedom (position and
momentum) has a spin-1=2-like internal one (two-level
system) [1]. We assume it evolves in time as follows. We
first apply a unitary operation C (our ‘‘quantum coin’’)
acting only on the qubit’s internal degree of freedom,
leaving it generally in a superposition of spin up and
down. We then apply another unitary operation S that
correlates the displacement of the qubit to its internal
degree of freedom. It moves right if the spin state at a
given site is up and left otherwise. In this way, we entangle
the internal and external degrees of freedom of the system.
Successive applications of the previous procedure lead to
the discrete time evolution (displacement) of the qubit.
This is what we call the one-dimensional discrete time
quantum random walk (QRW) [2,3].

The key difference between the classical random walk
(CRW) [4] and QRW is the superposition principle of
quantum mechanics, a feature that is obviously lacking in
CRW. The application of C followed by the displacement
operator S at each step generates a catlike state among all
possible positions of the particle, setting the stage for
interference effects to take place. The interference among
the probability amplitudes manifests itself by producing a
position probability distribution PðjÞ drastically different
from the classical one. Indeed, PðjÞ for the unbiased CRW
is always peaked about the initial position and drops off
exponentially with the square of the distance (Gaussian
distribution). Also, its variance �2 is proportional to the
number n of steps (coins flipped). This is the diffusive
behavior. For the unbiased QRW, however, PðjÞ is roughly
uniform as we move away from the origin, having peaks far
from it. Moreover, depending on the initial spin state, we
can have one peak at the left, or at the right, or two sym-
metrical peaks [3], and �2 / n2, a quadratic gain (ballistic
behavior) in the propagation of the particle when compared
to CRW. Furthermore, due to the SUð2Þ structure of C, we

have a coin with three independent parameters, while
classically there is only one.
Both CRWand QRW, in the one- or higher-dimensional

versions, have many important applications [5]. And the
majority of studies dealing with QRWassume that C is the
same during all steps of the walk or changes in a determi-
nistic way [3,8–13]. What would happen, though, if noise,
disorder, or fluctuations change C from one step to the
other?What would happen if C changes randomly between
two possible coins? A naive guess would suggest that all
features of QRW may be washed out by such a process.
Indeed, it is known that some typical features of QRW,
such as PðjÞ and �2, change in such random processes and
approach the classical case [14]. However, so far no sys-
tematic numerical and/or analytical studies along this line
were done for the entanglement content of the walker and
for any initial condition. The only exception is Ref. [15],
which came to our knowledge after finishing this work and
where for only one initial condition and a particular type of
static and dynamical disorder the behavior of entanglement
was numerically investigated for a 100-step walk.
Our main goal here is to investigate such an extra

random aspect on a QRW and analyze whether or not it is
detrimental to its entanglement generation capacity. Our
main finding is, surprisingly, that the opposite from the
naive guess occurs when it comes to entanglement genera-
tion using a dynamically disordered QRW. We show that
the entanglement, a genuine quantum feature, between the
internal and external degrees of freedom of the walker is
enhanced when C changes from one step to the other in a
truly random way. We also show that we achieve, asymp-
totically in the number of steps, a maximally entangled
state. Moreover, we show that this effect is independent of
the initial condition, contrary to standard entanglement
generation schemes that rely critically on the initial state
of the system and never achieve maximal entangle-
ment [12]. It is worth mentioning that this initial state
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independence that we show here has important practical
consequences and shows that the entanglement generation
scheme here presented is robust against imperfections in
the preparation of the initial state.

In order to explore these ideas, we introduce a walker
that combines the features of both the classical and quan-
tum ones in a single formalism. It has two random ingre-
dients, one of which is a classical coin similar to that of
CRW. This coin dictates which quantum coin (the source of
position randomness) will be used at each step of the walk.
This is the essence of this walker, and the presence of these
two different random aspects, one classical and another
quantum, leads us to call it a random quantum random
walk (RQRW) process. We show in Ref. [16] that CRWand
QRW are two particular cases of RQRW. Note that the
quantum random aspect manifests itself only when we
measure the position or spin of the walker (measurement
postulate of quantum mechanics). The dynamics is unitary,
however, leading some authors to call the ordered case
simply QW instead of QRW.

Mathematical formalism.—The Hilbert space of RQRW
is H ¼ H C �H P, where H C is a two-dimensional
complex vector space associated to the spin states
fj "i; j #ig and H P is an infinite-dimensional but countable
complex Hilbert space spanned by all integers. Its base is
represented by the kets jji, j 2 Z, and they denote the
position of the qubit on the lattice. With this notation
we write an arbitrary initial state of the qubit (walker)
as j�ð0Þi ¼ P

j½aðj; 0Þj "i � jji þ bðj; 0Þj #i � jji�, with
P

j½jaðj; 0Þj2 þ jbðj; 0Þj2� ¼ 1 being the normalization

condition and j running over all integers. The time t is
discrete, and it denotes the steps of the walker. In an n-step
process, the time changes from t ¼ 0 to t ¼ n in in-
crements of one, and the walker’s state is j�ðnÞi ¼
UðnÞ . . .Uð1Þj�ð0Þi ¼ T

Q
n
t¼1 UðtÞj�ð0Þi, where T

denotes a time-ordered product and

UðtÞ ¼ S½CðtÞ � 1P�: (1)

Here 1P is the identity operator acting on the space H P,
CðtÞ the time-dependent quantum coin, and S the condi-
tional displacement operator. The operator S moves the
qubit at site j to the site jþ 1 if its spin is up and to the site
j� 1 if its spin is down. By using the present notation,
S ¼ P

jðj "ih" j � jjþ 1ihjj þ j #ih# j � jj� 1ihjjÞ.
An arbitrary CðtÞ is given by the most general way of

writing an SUð2Þ unitary transformation. Up to an irrele-
vant global phase we have CðtÞ¼c""ðtÞj "ih" jþc"#ðtÞj "i�
h# jþc#"ðtÞj #ih" jþc##ðtÞj #ih# j, with c""ðtÞ¼

ffiffiffiffiffiffiffiffi
qðtÞp

, c"#ðtÞ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�qðtÞp

ei�ðtÞ, c#"ðtÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�qðtÞp

ei’ðtÞ, and c##ðtÞ ¼
� ffiffiffiffiffiffiffiffi

qðtÞp
ei½�ðtÞþ’ðtÞ�. Here 0 � qðtÞ � 1 and 0 � �ðtÞ,

’ðtÞ � 2�. The first parameter controls the bias of CðtÞ.
For qðtÞ ¼ 1=2 the coin creates an equal superposition of
the spin states when acting on either j "i or j #i and an
unbalanced one for qðtÞ � 1=2. The last two parameters

control the relative phase between the two states in the
superposition. Note that we are exploring the full SUð2Þ
structure of CðtÞ with its three independent parameters,
which makes it more general than the ones in Ref. [14].
Time-dependent walkers were also explored in [17],
where, instead of C, S was made time dependent, and
in [18,19].
The general time evolution can be obtained by applying

UðtÞ [Eq. (1)] to an arbitrary state at time t� 1. This
leads to j�ðtÞi¼UðtÞj�ðt�1Þi¼P

j½aðj;tÞj "ijjiþ
bðj;tÞj #ijji�, where
aðj; tÞ ¼ c""ðtÞaðj� 1; t� 1Þ þ c"#ðtÞbðj� 1; t� 1Þ;
bðj; tÞ ¼ c#"ðtÞaðjþ 1; t� 1Þ þ c##ðtÞbðjþ 1; t� 1Þ: (2)

We will focus here on two types of RQRW (see Fig. 1).
The first one deals with only two quantum coins: C1 and
C2. At each step of the walk, the decision to use C1 or C2 is
made by the result of a classical coin. If we get heads at
step t, we useC1, and if we get tails, we useC2. We call this
process a RQRW2, with the subindex denoting that our
choices are made randomly between two quantum coins.
In the second RQRW we have an infinite number of CðtÞ

to choose at each step. The independent parameters ofCðtÞ,
namely, qðtÞ, �ðtÞ, and ’ðtÞ, are chosen from continuous
uniform distributions spanning the range of their allowed
values. Note that we can have a walk where either one, two,
or all parameters change at each step. We call such walks
RQRW1.
Entanglement.—Since �ðtÞ ¼ j�ðtÞih�ðtÞj is pure, we

quantify the entanglement between the internal and exter-
nal degrees of freedom by the von Neumann entropy of the
partially reduced state �CðtÞ ¼ TrP½�ðtÞ� [20], SE½�ðtÞ� ¼
�Tr½�CðtÞlog2�CðtÞ�, with TrPð�Þ being the trace over
the position degrees of freedom. SE is 0 for separable
states and 1 for maximally entangled ones. Since �CðtÞ¼
�ðtÞj "ih" jþ�ðtÞj #ih# jþ�ðtÞj "ih# jþ��ðtÞj #ih" j, where
�ðtÞ¼P

jjaðj;tÞj2, �ðtÞ¼P
jjbðj;tÞj2, �ðtÞ¼P

jaðj;tÞ�
b�ðj;tÞ, and z� is the complex conjugate of z, we have

FIG. 1 (color online). (a) The dashed line represents a possible
realization of CRW, where no superposition occurs. The solid
curves represent probability amplitudes for RQRW2, where only
two CðtÞ are allowed (red and blue disks). (b) Schematic view for
RQRW1, where CðtÞ are chosen randomly from uniform con-
tinuous distributions of quantum coins (at each step a different
color or coin is used). Note that at each step all coins or colors
are the same (dynamical disorder).
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SE½�ðtÞ� ¼ ��þðtÞlog2�þðtÞ � ��ðtÞlog2��ðtÞ, with

�� ¼ f1=2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4� �ðtÞ½1� �ðtÞ� þ j�ðtÞj2p g being the

eigenvalues of �CðtÞ.
Results.—We start by studying two typical representa-

tives of RQRW. The first one is RQRW2 with C1 being the
Hadamard (H) coin [qðtÞ ¼ 1=2, �ðtÞ ¼ ’ðtÞ ¼ 0] and C2

the Fourier or Kempe (F) coin [qðtÞ ¼ 1=2, �ðtÞ ¼ ’ðtÞ ¼
�=2]. Note that the latter coin introduces a �=2 relative
phase between j "i and j #i. The other walk is RQRW1,
where at each step the values of qðtÞ, �ðtÞ, and ’ðtÞ are
chosen randomly from three distinct continuous uniform
distributions.

In order to investigate the dependence of the asymptotic
behavior of SE on initial conditions, we run several thou-
sand numerical experiments, each with a different initial
condition. Each realization of the walk gives at step t a
value for SE, and in Fig. 2 we show the average values of
SE over all realizations at each step t.

As can be seen from Fig. 2, the average entanglement
hSEi approaches the maximal value possible (SE ¼ 1) for
both RQRW cases after a few hundred steps. For compari-
son, we show the usual QRWwith a Hadamard coin, where
clearly hSEi � 1 asymptotically. Indeed, for the ordered
case the asymptotic value of SE is highly sensitive to the

initial conditions, and the set of initial states giving high
values of SE is not dense. An important example is the
Hadamard walk, where it can be shown [12] that the
asymptotic values of SE continuously oscillate between
SE ¼ 0:661 and SE ¼ 0:979 as we cover a set of initial
conditions similar to the ones in Fig. 2.
To gain further insights into the asymptotic limit of SE,

we run another set of numerical experiments for the three
walks described in Fig. 2, but now going up to 1000 steps
and also counting the number of initial conditions leading
to high values of SE. By looking at Fig. 3, it is clear that
SE ! 1 for RQRW1 and RQRW2, while the Hadamard
QRW asymptotic entanglement is highly sensitive to the
initial conditions.
Now, since SE is bounded from above by one, hSEi ! 1

implies that for RQRW the set of initial states in which
SE ! 1 asymptotically is dense. In other words, this sug-
gests that in the asymptotic limit SE ! 1 for any initial
condition. The justification of the last assertion is given by
the following theorem.
Theorem.—In the asymptotic limit and for any initial

condition, SE ! 1 if the quantum coin acting on the walker
at each step is a random SUð2Þ unitary operator.
Here we outline the main ideas leading to the proof, and

the details are given in [16]. In the long time regime,

�Cðtþ 1Þ ¼ �CðtÞ þOðt�1=4Þ. Thus, �Cðtþ 1Þ ¼ �CðtÞ
for t ! 1. In terms of its coefficients, �ðtþ 1Þ ¼ �ðtÞ
and �ðtþ 1Þ ¼ �ðtÞ. This, plus the time evolution of �ðtÞ
and �ðtÞ, that can be computed with Eq. (2), leads to
Ref½c""ðtþ 2Þ=c"#ðtþ 2Þ � c""ðtþ 1Þ=c"#ðtþ 1Þ��ðtÞg ¼ 0.
Note that, for constant coins, this equality is trivially
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FIG. 2 (color online). hSEi was computed by averaging over
16 384 initial conditions of the form j�ð0Þi¼ðcos�sj "iþ
ei�s sin�sj #iÞ�ðcos�pj�1iþei�p sin�pj1iÞ, with �s;p 2 ½0; ��
and �s;p 2 ½0; 2��. The first realization used the initial condition
ð�s; �s; �p; �pÞ ¼ ð0; 0; 0; 0Þ and the subsequent ones all quad-

ruples of points in independent increments of 0.4 until �s;p ¼ �

and �s;p ¼ 2�. We worked with a 400-step walk. The blue

(square) curve gives RQRW1, the red (circle) one RQRW2,
and the green (solid) one the Hadamard QRW. The left inset
shows the average position probability distributions [hPðjÞi]
after 400 steps and the right one the average dispersions

(h
ffiffiffiffiffiffi
�2

p
i). The black dashed curves represent the expected results

for CRW starting at the origin, and they overlap with the curves
for RQRW1, which is more localized than RQRW2. The two
spikes on hPðjÞi for RQRW2 are due to the fact that it is built on
the Hadamard and Fourier coins, where these spikes are a
common trend.
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FIG. 3 (color online). hSEi was obtained by averaging over
2016 localized initial conditions given as j�ð0Þi ¼ ðcos�sj "i þ
ei�s sin�sj #iÞ � j0i, where �s 2 ½0; �� and �s 2 ½0; 2��. The
first realization used the initial condition ð�s; �sÞ ¼ ð0; 0Þ and
the next ones all pairs of points in independent increments of 0.1
until �s ¼ � and �s ¼ 2�. We worked with a 1000-step walk.
The inset shows the rate of initial conditions leading to SE
greater than 0.95, 0.97, and 0.99 at step 1000. Note that for
RQRW [middle (blue) and right (red) bars] almost 100% of the
initial conditions lead to SE > 0:97, while for QRW [left (green)
bar] this occurs for less than 10%.
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satisfied. But for time-dependent random ones, the term
inside the brackets is a random complex number zðtÞ ¼
xðtÞ þ iyðtÞ, with xðtÞ and yðtÞ random reals. Hence
xðtÞRe½�ðtÞ� � yðtÞIm½�ðtÞ� ¼ 0. Repeating this argument
for a subsequent time leads to xðtþ 1ÞRe½�ðtÞ� � yðtþ
1ÞIm½�ðtÞ� ¼ 0. These expressions form a homogeneous
system of linear equations on the variables Re½�ðtÞ� and
Im½�ðtÞ�. A nontrivial solution exists if the determinant of
its coefficients is zero. But this will almost surely not
happen, since xðtÞ, yðtÞ, xðtþ 1Þ, and yðtþ 1Þ are four
independent random numbers. Thus �ðtÞ ¼ 0 and �ðtÞ ¼
1=2, since the dynamics and the asymptotic condition give
�ðtÞ ¼ 1=2þ Re½�ðtÞc""ðtþ 1Þ=c"#ðtþ 1Þ�. These values

for �ðtÞ and �ðtÞ give SE ¼ 1, a maximally entangled state.
In Ref. [16], we investigate numerically other RQRW,

some of them not covered by the theorem, and how much
disorder we must have to achieve SE ! 1 asymptotically.
We show that weak disorder is sufficient to generate highly
entangled states for arbitrary initial conditions in a variety
of RQRW and give further details about the probability
distribution of the walker and its dispersion properties.
Finally, we also investigate how fast highly nonlocal initial
conditions (Gaussian distributions) approach the asymp-
totic limit SE ! 1.

Experimental implementation.—Current technology
allows one to implement in at least two ways the previous
walks. The first one is based on passive optical elements,
such as quarter (QWP) and half (HWP) wave plates and
polarizing beam splitters (PBSs), plus a fast-switching
electro-optical modulator (EOM) [21], where the internal
degree of freedom of the walker is the polarization of a
photon and the position or external one is mapped to
different arrival times of the photon at the photodetector
(time bins) [22].

The second way also uses photons as walkers, but it is
based on integrated photonics, where a disordered walk is
built on integrated waveguide circuits, providing perfect
phase stability. By using state-of-the-art femtosecond laser
writing techniques, the authors in Ref. [23] were able to
wrought an array of interferometers in a glass that repro-
duces the dynamics of RQRW [24].

To test the ideas here presented, we need to measure the
entanglement of the walker, which is obtained if we know
the coin state �CðtÞ. But �CðtÞ is determined by slightly
changing the two schemes outlined above. Indeed, since a
general photon polarization state is written as �CðtÞ ¼
1C þP

3
j¼1 rj�j, with �j being Pauli matrices, we can

determine �CðtÞ if we measure rj. But this is achieved by

measuring the average polarization of the photon in the
vertical (horizontal) axis (r3), in the�45	 axis (r1), and the
average right (left) circular polarization (r2) [25]. These
measurements can be easily implemented by properly
arranging a HWP and QWP before the photon passes a
PBS with photodetectors at each one of its arms. Note that
the raw data are related to �ðtÞ, and we need to trace out its

position degrees of freedom (postprocessing measurement)
to get �CðtÞ. In Ref. [16], we show that just a few steps are
enough to have different predictions for the behavior of SE
if we work with either RQRW2 or QRW.
Summary.—We defined the RQRW, a discrete time

quantum random walk scheme whose unitary evolution at
each step is chosen randomly by using a two-sided (or
infinitely sided) classical coin. We showed that both the
usual classical and quantum random walks are particular
cases of RQRW. We then studied its entanglement genera-
tion capacity. We showed that RQRW creates maximally
entangled sates in the asymptotic limit for several types
of dynamical disorder (random time evolution), contrary
to the ordered QRW. Furthermore, and surprisingly, we
proved that RQRW entanglement creation capabilities are
independent of the initial condition of the walker, another
property in contrast to ordered QRW.
Finally, we point out that our findings naturally lead to

new important questions. For example, what is the inter-
play between order or disorder and entanglement creation
for two- or three-dimensional walkers? What would hap-
pen to the entanglement for static disorder [15,21,23]? Can
the previous results be adapted to the case of two or more
[13] walkers to improve the creation of bipartite and multi-
partite entanglement, respectively, only among the internal
degrees of freedom? We believe investigations along these
lines may bring other unexpected and intriguing results and
foster the development of new entanglement generation
protocols.
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