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We propose a method to generate massive entanglement in a spinor Bose-Einstein condensate from an

initial product state through an adiabatic sweep of the magnetic field across a quantum phase transition

induced by competition between the spin-dependent collision interaction and the quadratic Zeeman effect.

The generated many-body entanglement is characterized by the experimentally measurable entanglement

depth in the proximity of the Dicke state. We show that the scheme is robust to practical noise and

experimental imperfection and under realistic conditions it is possible to generate genuine entanglement

for hundreds of atoms.
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The generation of massive entanglement, besides its
interest for the foundational research of quantum theory,
is of great importance for applications in quantum infor-
mation processing and precision measurements.
Entanglement is a valuable resource that can be used to
enhance the performance of quantum computation, the
security of quantum communication, and the precision of
quantum measurements. For these applications, it is
desirable to get as many particles as possible into
entangled states. However, entanglement is typically frag-
ile and many-particle entangled states can be easily
destroyed by decoherence due to inevitable coupling to
the environment. For the experimental record, so far 14
qubits carried by trapped ions have been successfully
prepared into genuine entangled states [1]. Pushing up
this number represents a challenging goal in the experi-
mental frontier.

The Bose-Einstein condensate of ultracold atoms is in a
pure quantum mechanical state with a strong collision
interaction. In a spinor condensate [2–4], the spin-
dependent collision interaction can be used to produce
spin squeezing [5,6], which is an indicator of many-particle
entanglement [7]. Spin squeezing has been demonstrated
in condensates in recent experiments through spin-
dependent collision dynamics [6,8]. A squeezed state is
typically sensitive to noise and the generation of substan-
tial squeezing requires accurate control of experimental
systems, which is typically challenging. In quantum infor-
mation theory, the Dicke states are known to be relatively
robust to noise and they have important applications for
quantum metrology [9] and implementation of quantum
information protocols [10]. For instance, the three-particle
Dicke state, the so-calledW state, has been proven to be the
most robust entangled state under particle loss [11].
Because of their applications and nice noise properties,
Dicke states represent an important class of many-body
states that are pursued in physical implementation. For a

few particles, Dicke states have been generated in several
experimental systems [12].
In this Letter, we propose a robust method to generate

massive entanglement in the proximity of many-particle
Dicke states through the control of an adiabatic passage
across a quantum phase transition in a spinor condensate.
Using conservation of the magnetic quantum number, we
show that a sweep of the magnetic field across the polar-
ferromagnetic phase transition provides a simple method to
generate many-body entanglement in this mesoscopic
system. The generated many-body entanglement can be
characterized through the entanglement depth, which mea-
sures how many particles have been prepared into genuine
entangled states [7,13]. The entanglement depth can be
easily measured experimentally for this system through a
criterion introduced in Ref. [14]. We quantitatively analyze
the entanglement production through the entanglement
depth and show that the scheme is robust under noise and
experimental imperfection. The scheme works for both the
ferromagnetic (such as 87Rb) and the antiferromagnetic
(such as 23Na) condensates. For the antiferromagnetic
case, we use adiabatic quantum phase transition in the
highest eigenstate of the Hamiltonian instead of its ground
state.
The system under consideration is a ferromagnetic (or

antiferromagnetic) spin-1 Bose-Einstein condensate under
an external magnetic field, which has been realized with
87Rb (or 23Na) atoms in an optical trap [4]. The spin-
independent collision rate of a spinor condensate is typi-
cally much larger than the spin-dependent one. In this case,
to describe the ground state of the spinor condensate in a
spin-independent optical trap, it is a good approximation to
assume that different spin components of the condensate
take the same spatial wave function �ðrÞ. This is the well-
known single mode approximation [3,4], and under this

approximation we have the atomic field operator ĉ m �
âm�ðrÞ, (m ¼ 1, 0, �1) where am is the annihilation
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operator for the corresponding spin mode. We assume the
spinor condensate has a fixed total particle number N as in
the experiments and neglect the terms in the Hamiltonian
that are constant under this condition. The relevant part of
the Hamiltonian for a spinor condensate then takes the
form [3,4] (see the Supplemental Material for a more
detailed derivation [15])

H ¼ c1
L2

N
þ X1

m¼�1

ðqm2 � pmÞaymam; (1)

where c1 denotes the spin-dependent collision energy, p
(q) corresponds, respectively, to the linear (quadratic)

Zeeman energy shift, and L� � P
m;na

y
mðf�Þmnan is the

spin-1 angular momentum operator. The symbol f� (� ¼
x, y, z) denotes the � component of the spin-1 matrix, and
ðf�Þmn is the corresponding (m, n) matrix element. We

have c1 < 0 (c1 > 0) for 87Rb (23Na), which corresponds to
ferromagnetic (antiferromagnetic) interaction, respec-

tively. The linear Zeeman term
P

1
m¼�1 pmaymam ¼ pLz

typically dominates in the Hamiltonian H. However, this
term commutes with all the other terms in the Hamiltonian.
If we start with an initial state that is an eigenstate of Lz,
the linear Zeeman term has no effect and thus can be
neglected. In this Letter, we consider an initial state with
all the atoms prepared to the level jF ¼ 1; m ¼ 0i through
optical pumping, which is an eigenstate of Lz. The system
remains in this eigenstate with the magnetization Lz ¼ 0,
and the effective spin Hamiltonian becomes

H ¼ c1
L2

N
� qay0a0: (2)

The ratio q=c1 is the only tunable parameter in this
Hamiltonian and, depending on its value, the
Hamiltonian has different phases resulting from competi-
tion between the quadratic Zeeman effect and the spin-
dependent collision interaction.

We first consider the ferromagnetic case with c1 < 0.
For the initial state, we tune up the magnetic field to make
the quadratic Zeeman coefficient q � jc1j. In this limit,

the second term �qay0a0 dominates in the Hamiltonian

H. The ground state of the Hamiltonian is given by an

eigenstate of ay0a0 with the maximum eigenvalue N. This

ground state can be prepared by putting all the atoms to the
Zeeman level jF ¼ 1; m ¼ 0i through optical pumping.
Then we slowly ramp down the magnetic field to zero.
From the adiabatic theorem, the system remains in the
ground state of the Hamiltonian H and the final state is
the lowest-energy state of HF ¼ c1L

2=N, which is the
Dicke state jL ¼ N;Lz ¼ 0i that maximizes L2 with the
eigenvalue LðLþ 1Þ. The Dicke state jL ¼ N;Lz ¼ 0i is a
massively entangled state of all the particles.

The above simple argument illustrates the possibility of
generating massive entanglement through an adiabatic
passage. To turn this possibility into reality, however, there

are several key issues we need to analyze carefully. First,
we need to know what the requirement of the sweeping
speed of the parameter q to maintain an adiabatic passage
is. In particular, this adiabatic passage goes through a
quantum phase transition where the energy gap approaches
zero in the thermodynamical limit. So the evolution cannot
be fully adiabatic for a large system. It is important to know
how the energy gap scales with the particle number N for
this mesoscopic system. Second, due to the nonadiabatic
correction and other inevitable noise in a real experimental
system, the final state is never a pure state and is quite
different from its ideal form jL ¼ N;Lz ¼ 0i. For a many-
body system with a large number of particles, the state
fidelity is always close to 0 with the presence of just small
noise. So we need to analyze whether we can still generate
and confirm genuine many-particle entanglement under
realistic experimental conditions.
To analyze the entanglement behavior, first we quanti-

tatively calculate the phase transition points during this
adiabatic passage and analyze how the energy gap scales
with the particle number N. The mean-field phase diagram
for Hamiltonian equation (1), is well known [4]. However,
in typical mean-field calculations one fixes the parameters
p, q to obtain the ground state of Hamiltonian equation (1),
and this ground state in general has varying magnetization
hLzi. For our proposed adiabatic passage, we should
fix Lz ¼ 0 and find the ground state of Hamiltonian
equation (2) instead of Eq. (1) as the linear Zeeman term
is irrelevant. We perform an exact numerical many-body
calculation in the Hilbert space with Lz ¼ 0 to find the
ground state of Hamiltonian equation (2) (with the detailed
method explained in the Supplemental Material [15])
and draw the condensate fraction in the Zeeman level,

jF ¼ 1; m ¼ 0i, N0=N with N0 � hay0a0i, in Fig. 1 as we
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FIG. 1 (color online). The order parameter hN0=Ni shown as a
function of the quadratic Zeeman coefficient q in units of jc1j for
the total atom number N ¼ 105. The spin-dependent collision
dominates in the Hamiltonian in the small q (middle) region
while the magnetic interaction dominates in the large q (edge)
regions. Their competition leads to two second-order phase
transitions, taking place at q=jc1j ¼ �4.
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ramp down the parameter q. Control of the magnetic field
can only sweep the parameter q from the positive side to
zero. A further sweep of q to the negative side can be
obtained through the ac Stark effect induced by a micro-
wave field coupling the hyperfine levels jF ¼ 1i and
jF ¼ 2i, as demonstrated in experiments [16]. The curve
in Fig. 1 shows two second-order phase transitions at the
positions q=jc1j ¼ �4, where the condensate fraction
N0=N drops first from 1 to a positive number r (0<r<
1) and then to 0. The transition point at q=jc1j ¼ 4 agrees
with the mean-field prediction; however, there is a signifi-
cant discrepancy for the transition at q=jc1j ¼ �4. The
mean-field calculation under a fixed parameter p ¼ 0 pre-
dicts a transition at q=jc1j ¼ 0, where the magnetization
hLzi abruptly changes [4]. For the adiabatic passage con-
sidered here, due to the conservation of Lz the transition at
q=jc1j ¼ 0 is postponed to the point q=jc1j ¼ �4.

Besides the prediction of the phase transition points, the
exact many-body calculation can show the evolution of
entanglement for the ground state and the scaling of the
energy gap with the particle number N at the phase tran-
sition points. The scaling of the energy gap is important as
it shows the relevant time scale to maintain the adiabatic
passage. In Fig. 2(a), we show the energy gap� (defined as
the energy difference between the ground state and the first
excited state) in units of jc1j as a function of q=jc1j for
N ¼ 104 particles. The gap attains the minimum at the
phase transition points and is symmetric with respect to
the transitions at q=jc1j ¼ �4. In Fig. 2(b), we show how
the energy gap at the phase transition point scales with the
particle number N. In the log-log plot, the points are on a
line, which can be well fit with the polynomial scaling

� ¼ 7:4N�1=3. The energy gap decreases slowly with the
increase of the particle number N, which suggests it is
possible to maintain an adiabatic passage for typical ex-
perimental systems with N � 105.

With this understanding, we now turn to our main task,
which is to characterize entanglement generation with this

adiabatic passage. For this purpose, we need to have a
quantity to measure entanglement in the proximity of the
Dicke state and this measure should be accessible by
experimental detection. Because of nonadiabatic correc-
tions and inevitable noise in real experiments, we cannot
assume that the system is in a pure state and the entangle-
ment measure should work for any mixed states. Many-
body entanglement can be characterized in different ways,
and a convenient measure is the so-called entanglement
depth which measures how many particles in an N-particle
system have been prepared into genuine entangled states
given an arbitrary mixed state of the system [7,13,14]. A
quantity to measure the entanglement depth for N spin-1=2
particles has been provided in Ref. [14] based on measure-
ments of the collective spin operators. It is straightforward
to generalize this quantity to the case of N spin-1 particles.
For N spin-1 particles, the collective spin operator is
defined by L ¼ P

N
i¼1 li, where li denotes the individual

spin-1 operator. In terms of the bosonic mode operators,
the collective spin operator has the standard decomposition

L� ¼ P
m;na

y
mðf�Þmnan (� ¼ x, y, z; m, n ¼ 0, �1). To

characterize entanglement in the proximity of the Dicke
state jL ¼ N;Lz ¼ 0i, we measure the quantity

� ¼ hL2
xi þ hL2

yi
N½1þ 4hð�L2

zÞi�
: (3)

If � >m, from the arguments that lead to theorem 1 of
Ref. [14] we conclude that the system has at least a genuine
m-particle entanglement (i.e., the entanglement depth is
bounded by m from below). For the ideal Dicke state
jL¼N;Lz¼0i, one can easily verify that �¼Nþ1>N,
so all the N particles are in a genuine entangled state. The
final state of real experiments is, in general, a complicated
mixed state which is practically impossible to be read out
through quantum state tomography for many-particle sys-
tems. The power of the measure in Eq. (3) is that it gives an
experimentally convenient way to bound the entanglement
depth in this case through the simple detection of the
collective spin operators even through the system state
remains unknown.
Now we show how the entanglement measure defined in

Eq. (3) evolves when we adiabatically sweep the parameter
q in Hamiltonian equation (2). We ramp down the parame-
ter q linearly from q ¼ 6jc1j to 0 with a constant speed,
starting from the initial product state with all the particles
in the level jF ¼ 1; m ¼ 0i. The entanglement depth � of
the final state in units of N is shown in Figs. 3(a) and 3(b)
as a function of the sweeping speed v (in units of jc1j2 by
taking @ ¼ 1) for N ¼ 103 and N ¼ 104, respectively. We
see that the entanglement depth increases abruptly from a
few to the order of N when the speed v decreases below
jc1j2. In the same figure, we also show the excitation
probability of the final state (the probability to be not in
the ground state). For a small number of particles,
the excitation probability typically correlates with the
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FIG. 2 (color online). (a) The energy gap � in units of jc1j
shown as a function of q=jc1j with the total particle number
N ¼ 104. (b) The stars show the scaling of the energy gap�=jc1j
at the phase transition point with the particle number N in the
log-log plot. The solid line is a linear fit to the data points with
� ¼ 7:4N�1=3.
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entanglement depth, and they jump roughly around the
same value of the sweeping speed. However, for a large
number of particles (e.g., N � 104), we can have the
entanglement depth of the order of N while the excitation
probability is near the unity as shown in Fig. 3(b). This
indicates that the entanglement in the proximity of the
Dicke state is quite robust. Even when the sweep is not
fully adiabatic and most of the atoms are excited to the
low-lying excited states (meaning that the state fidelity
decrease to almost zero), we can still have the entangle-
ment depth close to N (meaning all the particles are still
genuinely entangled).

As the energy gap � at the phase transition point
decreases with the atom number N, one expects that the
required sweeping time T to get substantial entanglement
increases withN. However, this increase is very slow. First,

� decreases slowly with N by the scaling � / N�1=3 as
shown in Fig. 2(b). Second, for a large N even when
�T < 1 and a significant fraction of the atoms get excited
during the sweep, we can still observe substantial entan-
glement as the entanglement depth of the low-lying excited
states is still high as shown in Fig. 3(b). To see the quanti-
tative relation between the required sweeping time T and
the particle numberN, we fix the entanglement depth of the
final state to be a significant number (e.g., with � ¼ 0:3N,
0:5N, or 0:7N) and draw in Fig. 4 the scaling of T (in units
of 1=jc1j) as a function of N. When N � 103, the curve of
jc1jT is almost flat, increasing by a modest 20% when the
atom number grows by an order of magnitude.

All the calculations above are done for the ferromag-
netic case with c1 < 0 by assuming an adiabatic sweep of
Hamiltonian equation (2) in its ground state. For the anti-
ferromagnetic case with c1 > 0 (such as 23Na), we can
perform an adiabatic sweep along the ground state of the
Hamiltonian �H [or the highest eigenstate of the
HamiltonianH in Eq. (2)]. Then, all the calculations above

equally apply to the antiferromagnetic case. The only
difference is that initially the parameter q needs to be set
to the negative side with q ¼ �6jc1j when the atoms are
prepared into the level jm ¼ 0i. As mentioned before, q
can be switched to both the positive and the negative sides,
through an ac Stark shift from a �-polarized microwave
field that couples the hyperfine levels jF ¼ 1i and jF ¼ 2i
[16]. An advantage of using 23Na instead of 87Rb is that it is
has a larger spin-dependent collision rate jc1j and thus
allows a faster sweep of the parameter q. If we take the
peak condensate density at about 1014 cm�3, c1=@ is
estimated to be about �2�	 7 Hz for 87Rb atoms and
2�	 50 Hz for 23Na atoms.
Finally, we briefly discuss how the noise influences

entanglement generation in this scheme. First, in the prox-
imity of the Dicke state the entanglement depth measured
through Eq. (3) is very robust to the dephasing noise
(dephasing between the Zeeman levels caused by, e.g., a
small fluctuating magnetic field). As shown in Ref. [14],
even with a dephasing error rate at about 50% for each
individual atom, the entanglement depth � remains about
N=2, which is still large. The entanglement depth is more
sensitive to the bit-flip error that increases h�L2

zi in Eq. (3),
which can be caused by imperfect preparation of the initial
state, atom loss during the adiabatic sweep, or imperfection
in the final measurement of the collective spin operators.
The detection error can be corrected through simple data
processing using the method proposed in Ref. [17] as
long as its error rate has been calibrated. The initial state
jF ¼ 1; m ¼ 0i can be prepared efficiently through optical
pumping and remaining atoms in the jF ¼ 1; m ¼ �1i
levels can be blown away through microwave coupling to
the jF ¼ 2i levels that are unstable under atomic colli-
sions. The atomic loss should be small as the sweeping
time T is assumed to be much shorter compared with the
lifetime of the condensate. Only a loss of atoms in the
components jF ¼ 1; m ¼ �1i can increase the fluctuation
h�L2

zi. Assume the loss rate is p during the sweep, the
resultant h�L2

zi is estimated by h�L2
zi � Npð1� pÞ=6. For

a large number of atoms with Np � 1, the entanglement
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FIG. 3 (color online). The normalized entanglement depth
�=N (solid lines) and the excitation probability Pe (star points)
for the final state shown as functions of the sweeping speed v (in
units of jc1j2) for the number of particles N ¼ 103 (a) and
N ¼ 104 (b). The parameter q in the Hamiltonian, Eq. (4), is
ramped down linearly from q ¼ 6jc1j to 0 at a constant speed v,
starting from the initial product state with all the particles in the
level jm ¼ 0i.
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FIG. 4 (color online). Scaling of the required sweeping time T
(in units of 1=jc1j) with the particle number N as we fix the
entanglement depth of the final state to be 0:3N (bottom curve),
0:5N (middle curve), and 0:7N (top curve), respectively.
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depth in Eq. (3) is then estimated by �� 3=ð2pÞ. If we take
p at about 1%, it is possible to prepare a remarkable
number of hundreds of atoms into genuine entangled
states.
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