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There is growing evidence that for a range of dynamical systems featuring complex interactions

between large ensembles of interacting elements, mutual information peaks at order-disorder phase

transitions. We conjecture that, by contrast, information flow in such systems will generally peak strictly

on the disordered side of a phase transition. This conjecture is verified for a ferromagnetic 2D lattice Ising

model with Glauber dynamics and a transfer entropy-based measure of systemwide information flow.

Implications of the conjecture are considered, in particular, that for a complex dynamical system in the

process of transitioning from disordered to ordered dynamics (a mechanism implicated, for example, in

financial market crashes and the onset of some types of epileptic seizures); information dynamics may be

able to predict an imminent transition.
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In a system comprising a large number of interacting
elements with an order-disorder phase transition, it is easy
to argue that mutual information between elements must
peak at an intermediate order: for a highly ordered system,
there is little indeterminacy about the state of individual
elements and hence mutual information between elements
will be small, while for a highly disordered system, ele-
ments will behave near independently and again mutual
information between elements will be small. It also seems
reasonable (particularly if long-range interactions are con-
sidered) to expect that the peak will occur at the phase
transition—i.e., where susceptibility peaks—and indeed
this has been evidenced for a variety of complex systems,
including the 2D lattice Ising model [1,2], Vicsek’s particle
swarm model [3,4], random Boolean networks [5,6], and
financial markets [7]. For a complex dynamical system, it
is again easy to argue that information flow between ele-
ments must peak in an intermediate order regime; here,
however, it is less clear that the peak should coincide with
the phase transition. We show that for a 2D lattice Ising
model with Glauber dynamics [8], information flow, as
quantified by a global transfer entropy measure [9], attains
a maximum strictly in the disordered (paramagnetic)
phase. We conjecture that this phenomenon is universal
for a class of complex dynamical systems and discuss the
implications.

We consider an isotropic ferromagnetic 2D lattice Ising
model of size N ¼ L� L with no external field. If the
system is in state s ¼ s1 . . . sN , si 2 fþ1;�1g, then the
Hamiltonian is given by [10]

H ðsÞ ¼ �X
hi;ji

sisj; (1)

where hi; ji denotes a sum over the 2N unique pairs of
lattice neighbors. We impose periodic boundary conditions

so that the system is homogeneous: for any sites i, j there is
a symmetry �—i.e., a permutation of sites leaving the
Hamiltonian invariant—with �ðiÞ ¼ j. At thermodynamic
equilibrium, the Boltzmann-Gibbs probability to find the
system in state s is

�ðsÞ � PðS ¼ sÞ ¼ 1

Z
e��H ðsÞ; (2)

where S denotes a random equilibrium state,
� � 1=T is the inverse temperature (units are considered

normalized so that Boltzmann’s constant ¼ 1), and Z ¼P
se

��H ðsÞ is the partition function. The magnetization
per site is M ¼ ð1=NÞPihSii, the free energy per site
F ¼ �ð1=�NÞ logZ, and the internal energy per site
U ¼ �ð1=NÞð@=@�Þ logZ ¼ 1

N hH ðsÞi, where h� � �i
denotes an ensemble average. The model is largely solved
in the thermodynamic limit N ! 1 [11,12]; known
results pertinent to our study are displayed in Table I.
For the kinetic model, we consider discrete-time

Glauber spin-flip dynamics [8]: at each time step, a site i
is selected uniformly at random, and its spin flipped with
probability

PiðsÞ ¼
h
1þ e��H iðsÞ

i�1
; (3)

where �H iðsÞ � H ðsiÞ �H ðsÞ ¼ 2si
P

j2�ðiÞsj is the

energy difference between the spin-flipped and original
state. Here a superscript i denotes flipping the ith spin,
and �ðiÞ denotes the indices of the lattice neighbors of
site i. This (Markov chain Monte Carlo) scheme satisfies
detailed balance [13] and thus yields the Boltzmann
equilibrium probabilities (2) at stationarity.
Information-theoretic quantities may be framed in terms

of statistical dependency. The basic measure of statistical
dependency considered in this Letter is the mutual
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information IðX:YjZÞ between random variables X, Y,
optionally conditional on a third variable Z [14]; it
vanishes iff X, Y are independent, conditional on Z.
Given stationary stochastic processes XðtÞ; YðtÞ; t ¼
. . . ; 0; 1; 2; . . . , we take as a measure of past-conditional
dependence—sometimes (albeit controversially [15])
interpreted as information flow from process Y to

process X—the transfer entropy [9,16] TY!X �
IðXðtÞ:Yð‘ÞðtÞjXð‘ÞðtÞÞ. Here Xð‘ÞðtÞ�Xðt�1Þ; . . . ;Xðt�‘Þ
denotes the ‘-length history of the process X at time t for
‘ ¼ 1; 2; . . . . TY!X is zero iff process X, conditional on its
own past, is independent of the past of Y. Our interest here
is the behavior of ‘‘global’’ statistical dependencies for the
entire system of interacting spins. Below we define aver-
aged pairwise (bivariate) as well as gross global measures
for both static (mutual information-based) and dynamic
(transfer entropy-based) dependencies.

We define the pairwise mutual information measure

Ipw � 1

2N

X
hi;ji

IðSi:SjÞ; (4)

i.e., the lattice average mutual information between pairs
of neighboring sites. This is essentially the quantity pre-
viously considered in Refs. [1,2]; Ref. [17] also considers
the mutual information between two halves of a cylindrical
2D lattice. In Ref. [18] Sec. 1, we calculate that in the
thermodynamic limit

Ipw ! �2
X
�

p� logp� þ X
�;�0

p��0 logp��0 ; (5)

where the sums are over �, �0 ¼ �1, with (cf. Ref. [1])

p� ¼ 1

2
ð1þ �MÞ;

p��0 ¼ 1

4

�
1þ ð�þ �0ÞM� 1

2
��0U

�
:

(6)

Note that for T < Tc, the sign of M does not affect this
(and any subsequent) result; i.e., our information measures
are invariant under symmetry breaking. Our global mea-
sure of mutual information is the multi-information [19]

Igl ¼
X
i

HðSiÞ �HðSÞ; (7)

where Hð� � �Þ denotes entropy, which may be considered a
measure of gross statistical dependency among the Si; it

vanishes iff the Si are all independent. It is known [12] that
in the thermodynamic limit, 1

NHðSÞ ! �ðU�F Þ, so that

1

N
Igl ! �X

�

p� logp� � �ðU�F Þ: (8)

Next we consider the (‘ ¼ 1 history) pairwise transfer
entropy measure defined by

Tpw � 1

2N

X
hi;ji

TSj!Si : (9)

In Ref. [17] Sec. 2, we calculate that in the thermodynamic
limit

NTpw ! �q
X
�

log
q

p�

þX
�0
q�0

X
�

log
q�0

p��0
; (10)

where

q¼1

2
hPiðSÞi; q�0 ¼1

4
ðhPiðSÞiþ�0hSjPiðSÞiÞ; (11)

for i, j arbitrary lattice neighbors. A symmetry argument
(Ref. [17] Sec. 2) shows that hSjPiðSÞi � 0 for T � Tc,

i.e., when symmetry is unbroken. Finally, we define the
(‘ ¼ 1 history) global transfer entropy measure (cf. col-
lective transfer entropy [20])

Tgl � 1

N

X
i

TS!Si ; (12)

i.e., the average information flow from the entire spin
system to individual sites. This may be considered a mea-
sure of gross past-conditional statistical dependence of the
Si, insofar as it vanishes iff each Si, conditional on its own
past, does not depend on the past of spins at any other site.
It may alternately be thought of as a measure of ‘‘informa-
tion flow density,’’ closely related to causal density [21]. In
Ref. [17] Sec. 3, we show that in the thermodynamic limit

NTgl ! �q
X
�

log
q

p�

þ hPiðSÞ logPiðSÞi: (13)

In contrast to the mutual information measures, we do not
have analytic expressions for Tpw and Tgl.

It may be argued that the entire (i.e., ‘ ! 1) history
of the process ought to be taken into account for a valid
measure of information flow. Trivially, however, Eqs. (10)
and (13) will hold for any fixed finite history length ‘, since
in the thermodynamic limit there is only one spin update in

TABLE I. Thermodynamic limits for the 2D lattice Ising model: here � � 2ðsinh2�=cosh22�Þ.
Critical inverse temperature �c ¼ 1

2 log
�
1þ ffiffiffi

2
p �

Magnetization M ¼ �ð1� sinh�42�Þ1=8 for T < Tc, M ¼ 0 for T � Tc

Free energy �2�F ¼ logð2cosh22�Þ þ ð2=�ÞR�=2
0 log

�
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2sin2�
p �

d�

Internal energy �U ¼ coth2�
h
1þ ð2=�Þð� sinh2�� 1ÞR�=2

0 ðd�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2sin2�

p
Þ
i
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the neighborhood of the considered spin. In this sense, the
measures Tpw, Tgl are essentially short range in time and

space. Corresponding long-range measures (where the
order of limits N ! 1, ‘ ! 1 is reversed) are likely to
be far more difficult to calculate.

Experimentally, the measures Ipw and Igl at the thermo-

dynamic limit were computed in accordance with their
analytic expressions (5) and (8), respectively, while Tpw

and Tgl were estimated in simulation. We simulated a

kinetic Ising model of size N ¼ L� L for L ¼ 512.
Each update comprised N (potential) spin flips according
to the Glauber transition probabilities (3). Initial spin
configurations were uniform random �1 for T � Tc and
all þ1 for T < Tc, where Tc ¼ 1=�c � 2:269 was the
critical temperature. Simulations were initially run for a
relaxation time of 104 updates and statistics then collated
over a further 105 updates. Taking advantage of the ergo-
dicity of the Glauber dynamics, ensemble averages were
calculated as means, over the 105 sample equilibrium
states, of lattice averages. Estimates for Tpw and Tgl

were then obtained according to Eqs. (10) and (13), respec-
tively. This procedure was performed for 200 runs at 100
temperature points enclosing the phase transition. In addi-
tion, at each temperature, aggregate statistics based on a
total sample size of 2� 107 stationary states were
calculated.

Figure 1 displays Ipw, Igl, Tpw, and Tgl plotted against

temperature. For Ipw and Igl, solid lines plot analytic values

at the thermodynamic limit, while for Tpw and Tgl they

plot aggregate statistics. The gradients of all measures
appear to approach þ1 as T ! Tc (vertical dashed line)
from below, consistent with critical behavior of correlation
statistics at a second-order phase transition. In Ref. [17]
Sec. 4, we show that the gradients of Ipw and Igl approach

�1 logarithmically as T ! Tc from above. Although not
clear from the figures, we conjecture that the limiting
gradient of Tpw is negative and that of Tgl is positive as

T ! Tc from above. Indeed, we see that all measures peak
at Tc except forTgl, which has a maximum at T ¼ 2:354�
0:003> Tc. Figure 2 displays the detailed behavior of Tpw

and Tgl beyond Tc. The vertical arrow marks the Tgl

maximum. Because of critical slowing down [12], the
statistical error (indicated by 99% confidence intervals) is
greatest around Tc. To establish that the postcritical maxi-
mum is not merely a finite-system size artifact, we repeated
our simulations for smaller lattices of sizes L ¼ 64, 128,
and 256. At the temperature resolution deployed, it was
observed that the position of the maximum does not change
as the system size is increased; i.e., it does not ‘‘creep’’
towards the critical temperature.
It has been established previously that pairwise mutual

information peaks at the phase transition for the 2D lattice
Ising model [1,2]. Our results show that so too does pair-
wise transfer entropy. Note that both pairwise measures
incorporate putative statistical dependencies intermediated
by the joint distribution of the remaining system elements
with the spin pair in question. Our global measures do
not suffer from this effect; nonetheless, the static global
measure Igl also peaks at the phase transition, while the

dynamic measure Tgl peaks strictly in the disordered

regime. We conclude that a postcritical maximum is not
simply a consequence of accounting for common influen-
ces, nor is it a consequence alone of incorporating past-
conditional dependencies; both factors are required.
As to an intuitive explanation for the postcritical peak in

Tgl, preliminary research implicates a subtle interplay

between differing contributions to Tgl from sites within
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FIG. 1. Dependency measures (scaled by system size) plotted
against temperature for L ¼ 512. See main text for details.
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FIG. 2. Tpw and Tgl plotted against temperature for L ¼ 512
(detail). The shaded regions indicate 99% confidence intervals
based on the 200 trials, while the arrow marks the Tgl maximum

at T � 2:354.

PRL 111, 177203 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

25 OCTOBER 2013

177203-3



and on the boundaries of same-spin domains, and the
change in distribution of domain sizes as the temperature
increases and domains disintegrate [22]. A complementary
perspective is offered in Ref. [20], whereTgl is regarded as

a measure of collective information transfer, capturing
both pairwise (Tpw) and higher-order (multivariate) corre-

lations to a site. Its peak is interpreted in terms of conflict-
ing tendencies amongst these components as the level of
disorder in the system increases away from the phase
transition point (as empirically observed for random
Boolean networks [6]), that is, for pairwise correlations
to decay, while higher-order multivariate effects become
more prevalent.

If our conjecture holds that a postcritical peak in Tgl

(and a critical peak in Igl) is a universal phenomenon—at

least, perhaps, for some class of second-order phase tran-
sitions—it raises the intriguing possibility of anticipation
of an imminent phase transition in a system moving
slowly towards criticality from the disordered regime.
Specifically: if Tgl is seen to peak (when estimated over

time windows short in comparison to the time scale of
change in a notional order parameter), whilst Igl continues

to increase, we might suspect that the system is approach-
ing criticality. We suggest possible application to complex
systems such as financial markets and neural systems
where disorder-order phase transitions are associated
with pathological dynamics. Further research is required
to test universality, both in complex dynamical models and
on real-world data.

Finally, we remark that, of the measures presented, only
Igl is truly long range, whereas critical phenomena typi-

cally manifest at all spatiotemporal scales. One might
therefore question the relevance of our (short-range) mea-
sure Tgl for understanding information flow near critical-

ity. However, since long-range interactions emerge from
the cumulative effect of short-range interactions, our result
establishes a crucial foothold for the understanding of the
mechanism of this emergence. Secondly—in contrast to
our measures—long-range information flow is unfeasible
to estimate empirically from limited data and thus, while of
theoretical interest, is of limited practical utility.
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