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Ferromagnetic Ising systems with competing interactions are considered in the presence of a random

field. We find that in three space dimensions the ferromagnetic phase is disordered by a random field

which is considerably smaller than the typical interaction strength between the spins. This is the result of a

novel disordering mechanism triggered by an underlying spin-glass phase. Calculations for the specific

case of the long-range dipolar LiHoxY1�xF4 compound suggest that the above mechanism is responsible

for the peculiar dependence of the critical temperature on the strength of the random field and the

broadening of the susceptibility peaks as temperature is decreased, as found in recent experiments by

Silevitch et al.. [Nature (London) 448, 567 (2007)]. Our results thus emphasize the need to go beyond the

standard Imry-Ma argument when studying general random-field systems.

DOI: 10.1103/PhysRevLett.111.177202 PACS numbers: 75.50.Lk, 05.50.+q, 64.60.�i, 75.40.Mg

Introduction.—The random-field Ising model (RFIM)
plays a central role in the study of disordered systems
and has been applied to problems across disciplines
ranging from disordered magnets to random pinning of
polymers, as well as water seepage in porous media.

At and below the lower critical dimension d‘ ¼ 2, the
ferromagnetic (FM) phase is unstable to an infinitesimal
random field (RF) [1,2]. At higher space dimensions the
disordering of the FM phase requires the RF strength h to be
of the order of the spin-spin interaction strength J. Yet, the
effect of the RF on the transition between the FM and
paramagnetic (PM) phases—for systems with both short-
range and dipolar interactions—has been the source of vast
experimental and theoretical scrutiny [3–5]. Over the past
three decades the RFIM has been studied experimentally via
dilute antiferromagnets in a field [6], as both the RFIM and
the dilute antiferromagnets in a field seem to share the
same universality class. More recently it has been shown
that in anisotropic dipolar magnets the RFIM can be reali-
zed in the FM phase: By applying a transverse field to a
dilute dipolar ferromagnet, such as LiHoxY1�xF4, one trans-
forms the spatial disorder to a longitudinal effective RF
[7–9]. This opens the doors for advancing our understanding
of the RF problem [10], as well as new applications, such as
tunable domain-wall pinning [12] in magnetic materials.

Silevitch et al. recently studied the FM-to-PM transition
in the presence of RFs in LiHoxY1�xF4 [13]. Remarkably,
they found that Tc depends linearly on the transverse field
(and thus on h [7,9]) and that the susceptibility peak
diminishes and broadens as temperature decreases. In
Mn12�ac, which is a realization of the RFIM with all
FM interactions, a strong suppression of Tc as a function
of h was found as well [14], but with what appears to be a
quite different functional dependence at small h.

Here we study the interplay between FM and spin-glass
(SG) phases in a dipolar Ising model with competing
interactions in the presence of a RF. We find a novel
disordering mechanism of the FM phase when a RF is
applied and the system is in close proximity (e.g., via
dilution) to a SG phase. This disordering mechanism lies
between the Imry-Ma and standard disordering mecha-
nisms: The disordering of the FM phase occurs at a finite
RF, which is considerably smaller than the typical spin-
spin interaction, and the disordered phase [denoted hence-
forth as ‘‘quasi-SG’’ (QSG)] consists of not FM but glassy
domains. At T ¼ 0 we predict the existence of a FM-to-
QSG transition and determine for LiHoxY1�xF4, analyti-
cally and numerically, the phase boundary as a function of
the Ho concentration x and RF strength h. At finite tem-
perature our theory agrees with experiments [13], suggest-
ing that the existence of competing interactions and the
proximity to the SG phase dictate the broadening of the
susceptibility peaks at low temperature and the peculiar
dependence of Tc on h. Our theoretical analysis of the
SG phase follows the scaling approach of Fisher and
Huse [15]—its validity is supported by the agreement we
find with our numerical results. The nature of the SG phase
in a RF, however, is controversial [16–31], but of no
concern here.
Theoretical analysis.—We first study LiHoxY1�xF4 at

T ¼ 0. For dilutions x > xc the system is FM, whereas for
x0 < x< xc the system is a SG. Below we show numeri-
cally that xc � 0:3. To date, it is unclear if x0 > 0 [32,33].
For x � xc we define the energy per spin of the lowest FM
state of the system as fFMðxÞ, and the lowest energy of the
SG state as fSGðxÞ. Note that fFMðxÞ is the ground-state
energy of the FM phase when x > xc and fSGðxÞ represents
the ground-state energy of the SG phase for x0 < x < xc.
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At x ¼ xc, fFMðxcÞ ¼ fSGðxcÞ, and for x � xc, to first order
in x� xc, fSGðxÞ � fFMðxÞ ¼ �ðx� xcÞ þ � � � . We con-
sider the FM phase for x > xc in an applied RF of mean
zero and standard deviation h. For small h, the FM state in
three dimensions cannot gain energy from the field,
because domain flips are not energetically favorable.
However, for spin glasses the lower critical (Imry-Ma)
dimension is infinity [15]. In particular, in 3D the energy
of the system can be lowered by flipping domains, creating
a QSG phase with a finite correlation length. Thus, for
x� xc the energy of the SG state will become lower than
the energy of the FM state at a finite RF, which is still
considerably smaller than the typical spin-spin interaction
J. More generally, any 3D Ising system with competing
interactions having at zero RF a FM ground state and a SG
state at a somewhat higher energy will be disordered
through a transition to the QSG phase at a finite RF whose
magnitude depends on the proximity to the SG phase and
can be much smaller than J. Because in systems like
LiHoxY1�xF4 the effective RFs are a result of quantum
fluctuations [7,34], this phase transition is a particular case
of a quantum phase transition where the quantum fluctua-
tions of the spins are small, involving only the spin’s
ground and first excited states [35], but where the collec-
tive effect of all spins is strong enough to drive the
transition.

The value of the critical RF can be estimated using
the short-range Hamiltonian [36] in a RF HEA ¼
�P

hijiJijSiSj þ
P

ihiSi. Jij represent nearest-neighbor

Gaussian random bonds between spins Si with zero mean
and standard deviation J, and hi are Gaussian RFs of
average strength h [37]. The SG ground state is unstable
to an infinitesimal RF, creating domains of typical size

ðJ=hÞ1=ð3=2��Þ (� � 0:19) [38]. The energy reduction per

spin due to the RF is thus fðhÞ ¼ hðJ=hÞð�3=2Þ=ð3=2��Þ. The
total energy reduction per spin is of the same order,
because the energy cost to flip domains is much smaller.
Considering now a FM system with competing interac-
tions, e.g., LiHoxY1�xF4 at x > xc where at h ¼ 0 the
system is FM with fSG > fFM, the critical field hcðxÞ
can be computed from fðh ¼ hcÞ ¼ fSG � fFM, i.e.,
fðh ¼ hcÞ ¼ �ðx� xcÞ. One obtains

hcðxÞ ¼ �0ðJÞðx� xcÞð3=2��Þ=ð3��Þ; (1)

where �0ðJÞ ¼ �ð3=2��Þ=ð3��ÞJð3=2Þ=ð3��Þ; see Fig. 1. For
h > hcðxÞ there are finite domains within which glassy
order persists. The domain size decreases with increasing
field, where at h � J the system resembles a paramagnet.
As x ! xc, the disordering field approaches zero. For large
x� xc and h � J there is a crossover to the standard
behavior where the disordering is a result of single-spin
energy minimization; i.e., the intermediate QSG regime
disappears.

We now consider finite temperatures and analyze the
dependence of the FM Tc (at x > xc) on the effective RF.

Let us denote the lowest free energies per spin of the
FM phase (ordered for T < TFM, disordered for T > TFM)
and a competing disordered QSG phase as FFMðx; TÞ and
FQSGðx; TÞ, respectively. Because the entropy of the

QSG phase is dominated by regions at the boundaries
between domains [15], the main effect of the RFs is to

lower the QSG energy. Thus, FQSGðx;TÞ�FFMðx;TÞ¼
�AðT�TFMÞþBðx�xcÞ�h=�3=2

QSG [here, for h ¼ 0,

FQSGðxc; TcÞ ¼ FFMðxc; TcÞ]. For h < h� � Bðx� xcÞ�3=2

and T ¼ TFM we obtain FQSGðx; TÞ>FFMðx; TÞ, and the

transition occurs between an ordered FM phase and a
disordered PM phase dominated by FM fluctuations.

However, for h > h� we obtain TcðhÞ � Tcð0Þ ¼
A�1½Bðx� xcÞ � h=�3=2�, where the FM phase is disor-
dered by a PM phase dominated by fluctuations of domains
having SG correlations over distance �. Thus, at h ¼ h�,
TcðhÞ has a crossover from a roughly quadratic dependence
on the RF (known for a ferromagnet in a RF [39]) to a linear
dependence. This result is supported by our numerics.
Comparing to the experiments in Ref. [13], our results

are consistent with TcðhÞ being linear when h � J, with
deviations from linearity as h ! 0. Note that in Ref. [13]
TcðhÞ is linear down to the lowest RFs studied if one
defines Tc by the asymptotic behavior of the susceptibility
at high temperatures. However, if TcðhÞ is defined by the
peak position of the susceptibility, deviations from linear-
ity are observed at low fields [40].
Numerical details.—LiHoxY1�xF4 at low temperatures

and in an external transverse magnetic field is well
described by [9,41]

H ¼ X
i�j

Jij
2
�i�jSiSj þ Jex

2

X
hi;ji

�i�jSiSj þ
X
i

hi�iSi: (2)

Here, �i ¼ f0; 1g is the occupation of the magnetic
Ho3þ ions on a tetragonal lattice (lattice constants

FIG. 1 (color online). Comparison of the zero-temperature
numerical and analytical [Eq. (1)] h-x phase diagrams for the
diluted dipolar Ising model [Eq. (2)]. hcðxÞ � ðx� xcÞ0:466, with
� � 0:19 [38]. The analytical prediction agrees well with the
numerical data (�0 is a fitting parameter).
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a ¼ b ¼ 5:175 �A and c ¼ 10:75 �A) with four ions per
unit cell [42,43], Si 2 f	1g, hi represent Gaussian RFs
with zero mean and standard deviation h, where h is
measured in [K]. The magnetostatic dipolar coupling Jij
between twoHo3þ ions is given by Jij ¼ Dðr2ij � 3z2ijÞ=r5ij,
where rij ¼ jri � rjj, ri is the position of the ith Ho3þ ion

and zij ¼ ðri � rjÞ � ẑ is the component parallel to the easy

axis. D=a3 ¼ 0:214 K [44] and the nearest-neighbor ex-
change is Jex ¼ 0:12 K [42,45]. We use periodic boundary
conditions with Ewald sums [43,46]. At zero field and no
dilution, we find Tc ¼ 1:5316ð2Þ K, in agreement with
experimental results where Tc ¼ 1:530ð5Þ K [47].

For the zero-temperature simulations (Fig. 1) we use
jaded extremal optimization [48,49]. Here, � ¼ 1:6, 1.8,
and 2 with an aging parameter � ¼ 0:05 for at least 226

steps. Ground states are found with high confidence for
L 
 10 and h ¼ 0, and L 
 8with small h � 0. The phase
boundary is identified via the Binder ratio g ¼ ð1=2Þ�
ð3� ½m4�av=½m2�2avÞ, where m ¼ ð1=NÞPiSi (N ¼ 4xL3 is
the number of spins and ½� � ��av represents a disorder

average. g� ~G½L1=�ðx� xcÞ� is a dimensionless function,
allowing for the extraction of xc and � for a fixed h.
Parameters are listed in the Supplemental Material,
Table I [50].

At finite temperatures we use the parallel tempering
Monte Carlo method [51]. Parameters are listed in
Tables II, III, and IV in the Supplemental Material [50].
To determine the transitions for a given h and x we
measure [52]

�L ¼ 1

2 sinðkmin=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½hm2ð0ÞiT�av

½hm2ðkminÞiT�av
� 1

s
; (3)

where mðkÞ ¼ ð1=NÞPi¼1Si expðik �RiÞ. Here h� � �iT
represents a thermal average, andRi is the spatial location

of the spin Si, and kmin ¼ ð2�=L; 0; 0Þ. �L=L�
~X½L1=�ðT � TcÞ�; i.e., at the transition (T ¼ Tc) the argu-
ment of ~X is zero (up to scaling corrections) and hence
independent of L [lines of different system sizes cross
[Fig. 2(a)]]. If, however, the lines do not meet, no transition
occurs [Fig. 2(c)]. To determine TcðhÞ we scale the data

[Fig. 2(b)]. Using a bootstrapped Levenberg-Marquardt
minimization [53] allows us to determine the critical
parameters with statistical errors; see Table V of the
Supplemental Material [50]. Note that for a given x the
critical exponent � increases with h.
Figure 1 shows the h-x phase diagram of LiHoxY1�xF4

at zero temperature. We find excellent agreement with
Eq. (1), using � � 0:19 [38], i.e., hcðxÞ � ðx� xcÞ0:466,
and �0 a fitting parameter (quality of fit Q ¼ 0:89) [54].
Note, however, that good fits are also possible for 0:42 &
z & 0:5 with an optimal value of z ¼ 0:43ð4Þ (Q ¼ 0:82).
Figure 3 shows finite-temperature data for different x.

Figure 3(a) shows TcðhÞ for x ¼ 0:32, i.e., x� xc ¼ 0:02
small. Our results at finite T corroborate our theoretical
model with h� � 0:01, where, for h < h�, Tc is roughly
independent of h (at such small fields the numerical reso-
lution does not allow a distinction between a constant and a
parabolic dependence) and for h > h�, TcðhÞ decreases
linearly. The FM phase fully disorders, at all temperatures,
for h � 0:055ð5Þ, a value slightly larger than found from
the T ¼ 0 simulations, yet much smaller than the interac-
tion energy. Both the disordering of the FM phase at small
fields and the linearity of TcðhÞ seem to persist up to
x ¼ 0:44 [Fig. 3(b)], the dilution used in Ref. [13], albeit
with a less pronounced crossover at h ¼ h�. For x ¼ 0:65
[far from the SG phase, Fig. 3(c)] the behavior of TcðhÞ
changes to a quadratic dependence for all h < 0:3, suggest-
ing a standard FM-PM transition. Critical parameters are
listed in the Supplemental Material, Table V [50].
Phase diagram: Reentrance and experiment.—Our

analysis for zero RF suggests that the critical concentration
xc ¼ 0:3 separating the FM and SG phases depends only
slightly, if at all, on temperature. Reentrance to a SG phase
is either missing or limited to a small concentration regime,
in contrast to previous suggestions [55].
At the same time, our results at finite RF at both zero and

finite temperature for all concentrations suggest that there
is a range of RFs where the system shows reentrance to a
frozen QSG phase at low temperatures [56]. The RF-
temperature phase diagram is shown in Fig. 3. Note also
that the PM phase is characterized by distinct correlations

FIG. 2 (color online). Correlation length �L=L as a function of T for x ¼ 0:32. (a) h ¼ 0. There is a clear crossing for Tc ¼ 0:340ð3Þ
[45] for different system sizes L. (b) Scaling of the data for h ¼ 0. The solid line represents the optimal scaling function (polynomial
approximation). (c) h ¼ 0:06. There is no transition.
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over the phase diagram: FM fluctuating domains close to
the FM phase at h < h� [dashed line in Figs. 3(a) and 3(b)],
and SG fluctuating domains close to the transition for
h > h�. This form of the phase diagram is strongly sup-
ported by, and provides an explanation for, the results of
Ref. [13], Fig. 2. For T > 0:3 K [inflection point in
Fig. 3(b) above] there is a direct transition from the FM
to the PM [top horizontal arrow in Fig. 3(b)], as is indeed
marked experimentally by a sharp cusp in the magnetic
susceptibility. For T < 0:3 K, however, as the transverse
field (and correspondingly the effective RF) is increased,
the FM phase changes into a frozen QSG phase and
only then to the PM phase [central horizontal arrow in
Fig. 3(b)]. Experimentally, this effect is mirrored by a
broad peak in the susceptibility at T < 0:3 K, in good
agreement with the inflection point we find at x ¼ 0:44.
As temperature is further reduced, the crossover between
the frozen QSG phase and the PM phase occurs at a larger
RF [bottom horizontal arrow in Fig. 3(b)], resulting in
smaller glassy domains and the experimentally observed
diminishing peak of the susceptibility [7,59].

Conclusions.—We propose a novel disordering mecha-
nism for 3D ferromagnets with competing interactions and
an underlying spin-glass phase, resulting in a disordering
field which is finite, yet can be much smaller than the
interaction strength. We explain various aspects of the
experiments of Ref. [13], including the peculiar linear
dependence of Tc on the applied transverse field and the
diminishing and broadening of the susceptibility peak with
decreasing temperature. We further find that at smaller
concentrations (x ¼ 0:32, close to the spin-glass phase)
the reduction of Tc with the RF becomes more pronounced.
Our results strongly support the notion that it is the inter-
play between the competing interactions and the induced
effective RF that dictate the behavior of the LiHoxY1�xF4
ferromagnet at low concentrations. Our analytical results
are generic to FM systems with competing interactions. It
would therefore be interesting to verify these results for
other types of interactions and lattice structures [60].
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