
Degeneracy and Criticality from Emergent Frustration in Artificial Spin Ice

Gia-Wei Chern, Muir J. Morrison, and Cristiano Nisoli

Theoretical Division and Center for Nonlinear Studies, LANL, Los Alamos, New Mexico 87545, USA
(Received 29 October 2012; published 22 October 2013)

Although initially introduced to mimic the spin-ice pyrochlores, no artificial spin ice has yet exhibited

the expected degenerate ice phase with critical correlations similar to the celebrated Coulomb phase in the

pyrochlore lattice. Here we study a novel artificial spin ice based on a vertex-frustrated rather than

pairwise frustrated geometry and show that it exhibits a quasicritical ice phase of extensive residual

entropy and, significantly, algebraic correlations. Interesting in its own regard as a novel realization of

frustration in a vertex system, our lattice opens new pathways to study defects in a critical manifold and to

design degeneracy in artificial magnetic nanoarrays, a task so far elusive.
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Artificial spin ice (ASI) has raised considerable interest
for its technological potentials, and as a tailorable medium
to investigate collective phenomena in a materials-by-
design approach [1–22]. It was inspired by the so-called
spin ice compounds [23,24], a special class of pyrochlore
ferromagnets which, as water ice [25–27], retain a finite
entropy density even at very low temperatures. The non-
trivial local ordering dictated by the so-called two-in-two-
out ‘‘ice rules’’ [25] in pyrochlore lattice gives rise to
dipolarlike power-law spin correlations [28] at large dis-
tances. A recent surprise is the realization that dipolar
excitations in the ice manifold fractionalize into emergent
magnetic monopole quasiparticles [29]. Degeneracy is
essential for magnetic monopoles to play a significant
role in (artificial) spin ice.

The original artificial spin ice presented by Wang et al.
consists of magnetically interacting elongated permalloy
nanoislands arranged as links of a square lattice [2,4,5]. At
low temperatures, magnetic configurations satisfying the
2-in-2-out ice rules in square lattice can be mapped to a six-
vertex model. However, the anisotropic nature of magnetic
interactions in a 2D arrangement lifts the degeneracy of the
six distinct 2-in-2-out ice-rule vertices. The ground state of
square ASI is thus the ordered phase of the F model
[30,31]. Proposals to circumvent this limit [32], however,
present technical challenges in nanofabrication. So far,
only kagome ASI, with islands arranged along the edges
of a honeycomb lattice [14–16], exhibits an extensive
degeneracy at the vertex-level description, resulting from
the 2-in-1-out or 1-in-2-out pseudo-ice rules [33]. Yet this
pseudo-ice regime is noncritical, with exponentially decay-
ing spin correlation.

In this Letter, we show that a critical degenerate phase in
ASI, reminiscent of 3D natural spin ice, can be realized by
exploiting the concept of an emergent vertex frustration
[17], instead of frustrated pairwise interactions, thus solv-
ing a long-standing problem in the field. Specifically, we
consider a ‘‘shakti’’ lattice shown in Fig. 1(a) which (as a
graph) is isomorphic to the so-called Cairo pentagonal

tiling [34]. The degeneracy of this critical ice manifold
follows from the inability of allocating all the vertices in
their lowest energy configuration. This frustration in vertex
allocation is in contrast to the conventional frustrated
magnets in which the extensive degeneracy originates
from a degeneracy built in the constituting units, e.g.,
tetrahedra or triangles. Here instead the elementary units,
the vertices, are locally ordered, with a unique lowest-
energy configuration. However, an emergent composite
unit, the plaquette is frustrated toward the optimal alloca-
tion of all its vertices. We show that the degeneracy of
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FIG. 1 (color online). (a) The lattice geometry of the shakti
spin ice. The spin-ice state and the corresponding defect-vertex
configuration in a typical disordered ground state are shown in
panels (b) and (c), respectively. The defect type-II0 vertices are
indicated by circles. The defect configuration is further mapped
to an emergent 6-vertex model in (d).
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these plaquettes can be mapped to an exactly solvable
thermal state of an emergent, frustrated six-vertex
system, the F model. This emergent phase is known to
be critical [31].

The shakti lattice shown in Fig. 1(a) can be derived from
the square lattice [2] by alternatively placing an additional
vertical or horizontal Permalloy island in each square
plaquette. The lattice contains vertices with coordination
numbers z ¼ 4 or 3. Although the perpendicular geometry
of the islands makes different vertex configurations non-
equivalent (see Fig. 2), an extensive degeneracy is regained
as not all vertices can assume their minimum-energy con-
figurations simultaneously.

Since new generation annealing protocols
[1,6,18,19,21,35] might open a pathway to lower entropy
states than the one described by vertex models, here we
provide a comprehensive numerical study including the
full long-range dipolar interactions of the shakti lattice.
Yet, to understand the origin of the extensive degeneracy,
we first focus on the magnetostatic energies of the vertices
at the nearest-neighbor level.

Energetically, there are four distinct vertex types for the
z ¼ 4 sites, labeled by numerals I–IV, while the three types
of z ¼ 3 vertices are labeled as type I0, II0, and III0 (see
Fig. 2). For a realistic implementation, we are interested in
energy hierarchies satisfying �I < �II < �III, �I0 < �II0 <
�III0 , and �II0 � �I0 < �II � �I, which have been demon-
strated experimentally [1,2,4,5,16], and which we have
further corroborated with micromagnetics simulations
(see Supplemental Material [36]). More importantly, the
first two conditions therefore ensure there is no degeneracy
at the vertex level: the finite residual entropy density of the
ice phase (which is the ground state of the vertex model) is
a consequence of vertex frustration, i.e., the inability of all
vertices to reach the lowest-energy states simultaneously.
The third condition ensures that the vertex frustration is
accommodated with type II0, rather than type II, vertices.
We stress that our results, as often in vertex models, only
depend on the energy hierarchy of vertices, while the
particular parametrization is largely irrelevant—a rather
significant point, in view for practical implementations.

To explore potential low-T thermodynamic phases, we
perform Monte Carlo simulations using the dumbbell
model [8] which takes into account the full long-range
interactions between the nanoislands. We use the following

geometrical parameters: ls ¼ 0:475a and lc ¼ 0:95a,
where ls and lc are the length of the short and center
nanoislands, respectively, and a is the length of the square
plaquette. The dipole moments of the two types of islands
are �c ¼ 3�s, and the charges of the dumbbell are given
by Q ¼ �=l.
The simulation results are summarized in Fig. 3. At high

temperatures the system is in an uncorrelated paramagnetic
phase as the populations of various vertex types reach their
respective multiplicities. A broad peak in the specific-heat
[Fig. 3(c)] signals the crossover into an ice phase domi-
nated by vertices of types I, I0, and II0. We will show in the
following that this ice regime is a critical phase and is
described by an exactly solvable F model. As temperature
further decreases, the system undergoes a continuous tran-
sition into a phase characterized by a staggered ordering of
magnetic charges; the corresponding order parameter QN

versus temperature is shown in Fig. 3(d). Details of this
long-range ordered state are presented below. The entropy
density s of the system as a function of temperature is
obtained by integrating the c=T curve. At high tempera-
tures, the entropy density approaches kB ln2 as expected
for an Ising magnet [Fig. 3(c)]. More importantly, a plateau
s0 � 0:1178kB appears in the F-model regime, indicating
an extensive degeneracy of the ice phase.

’II II III IV II’ III’

FIG. 2 (color online). The seven different types of vertices in
artificial spin ice shown in Figs. 1(a) and 1(b), arranged by
increasing energy left to right. The multiplicities of the various
vertex types are qI ¼ 2, qII ¼ 4, qIII ¼ 8, and qIV ¼ 2 for z ¼ 4
vertices, and qI0 ¼ 2, qII0 ¼ 4, and qIII0 ¼ 2 for z ¼ 3 vertices.

FIG. 3 (color online). Monte Carlo simulation of the shakti
spin ice with Ns ¼ 1280 spins using the dumbbell representation
for the computation of magnetostatic energies. (a) and (b) The
fraction of various vertex types as a function of temperature T
measured in units of the parameter � from the dumbbell repre-
sentation. (c) The temperature dependence of entropy density s
and specific-heat c. The entropy curve sðTÞ is obtained by
integrating the specific-heat cðTÞ=T. (d) The temperature depen-
dence of order parameter QN characterizing the Néel-type
charge order in the ground state; also shown are vertex popula-
tions with total charge Q ¼ 0 and Q ¼ �1. The quasicritical
F-model phase is indicated by the shaded regime.
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We first consider the ice phase above the charge-
ordering transition, because it is the most likely to be
observed experimentally and can be described by vertex
considerations. While all z ¼ 4 sites are minimum-energy
type-I vertices in the low-T ice regime, only half of the
z ¼ 3 vertices are in the ground state, the other being
type-II0; see Figs. 3(a) and 3(b). We can thus characterize
the spin-ice state via the locations of these unhappy type-II0
vertices (or ‘‘defects’’) on plaquettes: Figs. 1(b) and 1(c)
show a generic disordered spin-ice state and the corre-
sponding defect configuration, respectively. This mapping
from spins into defects on plaquettes is at least 2-to-1:
each spin-ice state and its time-reversal partner are
mapped to the same defect configuration. Moreover,
when both defects sit at the two ends of the center spin,
i.e., in the type-6 plaquette in Fig. 4, there is an additional
Z2 degree of freedom associated with the direction of that
(red) spin.

By enumerating all possible magnetic configurations
in a plaquette one notes that each plaquette has at least
two defects in any spin-ice state. As a result, any con-
figuration in which each plaquette has exactly two
defects is a ground state, consistent with the numerical
result that nII0 ¼ 1=2 in the ice phase. This two-defects
constraint is similar to the 2-in-2-out ice rule in square
ice. Figure 4 shows the six different two-defects con-
figurations in a plaquette. Since there are two types of
plaquettes in our lattice with different orientations of the
center island, we refer to plaquettes with vertical (hori-
zontal) center spin as type-A (B) plaquettes. We can
bijectively map each defect configuration to an emergent
6-vertex state in the square lattice by drawing an arrow
from a type-A to its neighboring type-B plaquette if their
common edge contains a defect vertex; conversely, an
edge without an unhappy vertex corresponds to an arrow
pointing from a type-B to a type-A plaquette [Fig. 4 and
also Fig. 1(d)].

The partition function of the emergent 6-vertex model
can now be computed by taking into account the additional
doublet degeneracy of type-6 vertices. Let n6 denote the

number of type-6 vertices in a given 6-vertex configuration
C. The ground-state partition function of the shakti spin ice
is simply

Z ¼ X

C

2n6 ¼ X

C

ð ffiffiffi
2

p Þn5þn6 : (1)

Here we assume periodic boundary conditions. Since type-
5 and 6 vertices are sources and sinks, respectively, of the
horizontal arrows or ‘‘fluxes,’’ and the total flux is con-
served, thus n5 ¼ n6 [30]. Even though n5 ¼ n6 is strictly
true only for periodic boundary conditions, we can expect
n5 � n6 for any boundary conditions in the thermodynamic
limit.
The degeneracy of Eq. (1) can be estimated as:

W ¼ Wice � 2Nhhn6i, where Wice ¼ ð43Þ3Nh=10 is the degen-

eracy of the ideal square ice [30], hn6i � 0:189 is the
average population of a type-6 vertex in an ice state, and
Nh is the number of plaquettes (or vertices in a 6-vertex
state). Since Nh ¼ Ns=5 in shakti ice, where Ns is the
number of spins, this gives a residual entropy s0 ¼
kB lnW=Ns � 0:1125kB, close to the numerical result.
The entropy density of the shakti spin ice can be exactly

computed by recasting the partition function (1) into that of
the standard F model [31],

Z ¼ ffiffiffi
2

p
NhZF ¼ ffiffiffi

2
p

Nh
X

C

Y6

i¼1

!ni
i ; (2)

where!i denotes the statistical weight of the type-i vertex:
!1 ¼ !2 ¼ !3 ¼ !4 ¼ e�K and !5 ¼ !6 ¼ 1. The case
of shakti ice then corresponds to K ¼ 1

2 ln2. Note that

without the Z2 degree of freedom associated with the
center spin in type-6 plaquettes, which could be frozen
by application of a suitably small magnetic field, the
system becomes Lieb’s equal-weight six-vertex (K ¼ 0)
or square-ice model [31].
By varying the effective temperature Teff ¼ 1=K, the

F-model undergoes a Kosterlitz-Thouless transition at
Kc ¼ ln2 [30]. The correlation length is finite in the
ordered state for K >Kc, while the system remains critical
with an infinite correlation length for K � Kc. Our case
with K ¼ Kc=2 thus corresponds to a critical phase with
disordered vertices and spins, as anticipated above.
The residual entropy of Eq. (2) is S=kB ¼ lnZ ¼

ðNh=2Þ ln2þ lnZF. Computing the entropy density of the
Fmodel withK ¼ Kc=2 via the Bethe ansatz [31], we have
the residual entropy density for the shakti ice,

S

NhkB
¼ 1

�

Z �=2

0
lncotðk=2Þdk ¼ 2G

�
¼ 0:583122; (3)

where G is Catalan’s constant [31]. Since the number of
spins Ns ¼ 5Nh in shakti ice, Eq. (3) corresponds to an
entropy S=NskB ¼ 0:116624 per spin, which is fairly close
to our numerical value s0 ¼ 0:1178kB [Fig. 3(c)] as well as
to our estimate above.

1 2 3 4 5 6

FIG. 4 (color online). The six possible two-defects configura-
tions in a plaquette (for both type A and B) and their mapping to
the 2-in-2-out vertices.
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As mentioned above, the isomorphism with the F model
implies algebraic correlations, which we demonstrate by
Monte Carlo simulations (Fig. 5). We employ the efficient
loop algorithm in which detailed balance is always satis-
fied locally when constructing loops [37,38]. The defect-
defect correlation function is defined as CnðrÞ ¼
h�nðrÞ�nð0Þi, where �nðrÞ ¼ nðrÞ � hni, and nðrÞ ¼ 1 or
0 in presence or absence of defect at edge r and hni ¼ 1=2.
Figure 5(a) shows that CnðrÞ falls off quickly beyond
a few lattice constants. A stronger correlation CQðrÞ ¼
hQðrÞQð0Þi is obtained for the uncompensated magnetic
charges Q ¼ �1 at the z ¼ 3 vertices [see Fig. 5(b)]. By
reconstructing spin configuration from the defect configu-
ration generated via the loop algorithm, we also computed
the spin-spin correlation CsðrÞ shown in Fig. 5(c). In all
three cases, the log-log plots demonstrate algebraic decay.
The oscillations indicate the preferred short-range local
order of the ice phase as, intuitively, a staggered arrange-
ment of magnetic charges should minimize their Coulomb
repulsion. We emphasize, however, that this is distinct
from the full charge-ordered phase discussed below. The
lack of a length scale in a critical phase also implies that
loops of all lengths will be found in a typical disordered
state. Indeed, the probability distribution function PðsÞ

of loop length s shown in Fig. 5(d) exhibits a power-law
distribution PðsÞ � s�1:125 for short loops. A flat distribu-
tion at large s is due to winding loops in a finite
system [39].
Finally, we discuss the magnetic structure below the

charge-ordering transition [36]. Interestingly, we find that
a residual nonextensive degeneracy remains in shakti ice
with Néel-type charge order; this residual degeneracy is
related to an emergent sliding symmetry [40]. In this phase,
the defect-vertex configuration exhibits a layered structure
in which a period-2 1D ordering spontaneously appears in
either the x or y directions. The ordering thus reduces the
C4 rotation symmetry to C2. Figure 6 shows the crystal-
lization of the defect vertices along the x direction and the
corresponding spin and charge configuration. The system
remains ‘‘almost degenerate’’ energetically as the 1D
structure on a given chain is uniformly shifted by one
lattice constant [36]; the residual degeneracy thus scales
only as expðcLÞ, where c is a constant and L is the linear
size of the system. Since many of the layered states are not
only nearly degenerate, but are also separated by a large
energy barrier, the system is stuck in one of the layered
states below the charge-ordering transition.
The lack of parametric dependence and the realistic

energy hierarchy in our model make it realizable experi-
mentally as the first mixed coordination ASI and the first
extensively degenerate ASI in a critical phase. This phase
can now be accessed with second generation annealing
methods [1,6,18,19,21,35], thus opening novel directions
in the study of frustration-induced degeneracy, dynamics
of defects in a critical phase, and because of mixed
coordination, monopole excitations in a background of
magnetic charges [20].
We thank P. Mellado, A. Libal, C. Reichhardt, and

R. Moessner for useful comments. This work was carried

FIG. 6 (color online). (a) Clustering of defect vertices (shaded
diamonds) along the x direction in the charge-ordered state.
(b) Staggered ordering of magnetic charges and the spin-
configuration correspond to the defects pattern in (a). Here
blue (dark) and red (light) circles denote �1 magnetic charges
in natural units.

FIG. 5 (color online). The correlation function for (a) defect
vertex, (b) magnetic charge, and (c) magnetic moment measured
at the vertical edges of two plaquettes separated by r unit cells
along the diagonal direction of the lattice (Monte Carlo simula-
tions using the loop algorithm [37]). Insets show the same data
(with absolute values) in log-log plot, indicating power-law
correlations CðrÞ � r�� with exponents �n ¼ 1:96986�
0:0046, �Q ¼ 0:497144� 0:001952, and �s ¼ 0:502075�
0:002028, respectively. Panel (d) shows the probability distribu-
tion of loop lengths s.
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