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Palladium hydrides display the largest isotope effect anomaly known in the literature. Replacement of

hydrogen with the heavier isotopes leads to higher superconducting temperatures, a behavior inconsistent

with harmonic theory. Solving the self-consistent harmonic approximation by a stochastic approach, we

obtain the anharmonic free energy, the thermal expansion, and the superconducting properties fully

ab initio. We find that the phonon spectra are strongly renormalized by anharmonicity far beyond the

perturbative regime. Superconductivity is phonon mediated, but the harmonic approximation largely

overestimates the superconducting critical temperatures. We explain the inverse isotope effect, obtaining a

�0:38 value for the isotope coefficient in good agreement with experiments, hydrogen anharmonicity

being mainly responsible for the isotope anomaly.
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The explanation of the ion-mass isotope effect in
phonon-mediated superconductors is one of the greatest
successes of the Bardeen-Cooper-Schrieffer (BCS) theory
[1]. In a BCS superconductor composed of only one type of
ions of mass M, the superconducting critical temperature
Tc is expected to behave as Tc / M��, where � ¼ 0:5 is
the isotope coefficient. In conventional superconductors
with more atomic species, the total isotope coefficient
should also be close to 0.5. However, in many supercon-
ductors like MgB2 [2], fullerides [3], or high-Tc cuprates
[4,5] the isotope coefficient is substantially reduced and, in
the most extreme case of palladium hydrides (PHs), it is
even negative [6–8].

An isotope coefficient � ¼ 0:5 relies on the following
assumptions: (i) the phonon frequencies are harmonic;
consequently (ii) the electron-phonon interaction is mass
independent, and (iii) the electron-electron interaction is
not affected by the isotope substitution. Thus, a reduced
isotope effect can either be the fingerprint of a nonconven-
tional mechanism (e.g., spin fluctuations or correlated
superconductivity) or the breakdown of one of these
assumptions (e.g., anharmonicity). In both cases, the super-
conducting state is considered anomalous and current
state-of-the-art calculations do not quantitatively account
for the behavior of Tc as a function of the isotope mass.
This is due to the difficulties of dealing either with non-
conventional mechanisms or with anharmonicity.

Here we consider the most pathological case present in
the literature, the inverse isotope effect in PHs. PdH has
Tc ¼ 8–9 K [6,7]. Hydrogen substitution with the heavier
deuterium leads to a higher Tc, as Tc(PdD) � 10–11 K
[6,7], leading to � ¼ �½lnTcðPdDÞ � lnTcðPdHÞ�= ln2 �
�0:3. Remarkably, PdT has a higher Tc than PdD, but there
is no experimental value at full stoichiometry [8]. A con-
siderable theoretical and experimental effort [9–21] has

been devoted to explaining this phenomenon over the last
decades. Karakozov et al. [9], in a pioneering work, studied
anharmoniciy inPHs in the frameworkof perturbation theory
to the bare harmonic phonon frequency and concluded that
the negative isotope effect could be due to anharmonicity, as
other authors suggested later [19]. Other explanations based
on electronic properties [16], zero-point motion [21], and
volume effects [20] have been invoked as well. Inelastic
neutron scattering experiments [14] show strongly tempera-
ture dependent phonon lifetimes, a clear fingerprint of anhar-
monicity. Furthermore, ab initio total energy calculations
[18,19] suggest that the potential felt by the hydrogen atoms
is very anharmonic. Nevertheless, no state-of-the-art calcu-
lations of the electron-phonon interaction and anharmonicity
are present so that the interplay of these effects is still unclear.
In this work we study the occurrence of phonon-mediated

superconductivity in PHs and show that the inverse iso-
tope effect is quantitatively explained by the inclusion of
anharmonicity. Anharmonicity is so large that perturbative
approaches [9,22–24] are not feasible in PHs. To solve this
issue, we implement the self-consistent harmonic approxi-
mation (SCHA) [25] within a first-principles approach.
Differently from other methods developed to deal with
anharmonic effects [26–28], our method allows us to access
directly the anharmonic free energy of the system, with full
inclusion of the anharmonic potential terms, and is varia-
tional in the free energy with respect to a trial harmonic
potential. Moreover, compared to other implementations of
the SCHA [29,30], we replace the cumbersome calculation
of anharmonic coefficients by the evaluation of atomic
forces on supercells with suitably chosen stochastic ionic
configurations.
The ionic Hamiltonian is H ¼ T þ V, where T and V

are the kinetic and potential energy operators. In the
adiabatic approximation the potential is defined by the
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Born-Oppenheimer (BO) energy surface. Then, the free
energy of the ionic system can be calculated as FH ¼
� 1

� lnZH, where the partition function is ZH ¼ tr½e��H�
and � ¼ 1=ðkBTÞ. A quantum variational principle in the
free energy can be established for an arbitrary trial
Hamiltonian H ¼ T þV as [25]

FH � F H½H � ¼ FH þ
Z

dR½VðRÞ �V ðRÞ��H ðRÞ;
(1)

where �H ðRÞ ¼ hRje��H jRi=ZH is the probability to
find a system described by H in a general R ionic con-
figuration. The equality holds for H ¼ H. The SCHA
takes a harmonic V and minimizes F H½H � with respect
to it [25]. One advantage of taking a harmonic potential is
that FH and �H ðRÞ can be expressed in a closed form in
terms of the phonon frequencies and polarizations [31]. In
particular, �H ðRÞ is Gaussian and is given as

�H ðRÞ ¼ AH exp

�
� X

st���

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MsMt

p
2a2

�H

�s�
�H

�t�
�H

us�ut�
�
;

(2)

where AH is the normalization constant, s and t are atom
indices,� and� are Cartesian indices,� is a mode index,M
denotes the mass of an atom, u ¼ R�Req is the dis-

placement from equilibrium, a2
�H

¼ @ cothð�@!�H =2Þ=
ð2!�H Þ, and f!�H g and f�s�

�H
g represent the phonon

frequencies and polarizations defined by H .
As long as the equilibrium positions are fixed by

symmetry, as in PHs, minimizing F H½H � with respect
to V is equivalent to performing the minimization with
respect to the force constant matrix C, which defines the

trial harmonic potential as V ¼ 1
2

P
st��u

s�C��
st ut�. The

minimization is carried through the components of C in the
basis of N � N Hermitian matrices preserving crystal
symmetries, where N is the number of modes. We mini-
mize F H½H � by a conjugate-gradient (CG) algorithm,
which requires the knowledge of the gradient rF H½H �
with respect to C:

rF H½H � ¼ �X
st��

Est��

H

Z
dR~fs�H ðRÞut��H ðRÞ; (3)

where Est��

H
¼P

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mt=Ms

p ð�s�
�H

rlna�H þr�s�
�H

Þ�t�
�H

,

and ~fs�H ðRÞ ¼ fs�ðRÞ � fs�
H
ðRÞ is the difference between

the force on the sth atom along the direction�, fs�ðRÞ, and
the harmonic force derived fromV , fs�

H
ðRÞ. At each step j

of the CG minimization, the trial harmonic Hamiltonian is
updated to H j, until the minimum is found. At the mini-

mum, the f!�H g frequencies form the SCHA phonon

spectrum renormalized by anharmonicity
In our stochastic SCHA (SSCHA) approach, both

F H½H � and rF H½H � are calculated making use of

importance sampling and reweighting techniques. We start
defining an initial trial H 0 harmonic Hamiltonian and
creating a set of fRIgI¼1;...;Nc

ionic configurations in a

supercell according to the �H 0
ðRÞ distribution given in

Eq. (2). These configurations are trivially created making
use of random numbers generated with a Gaussian distri-
bution. Secondly, we calculate the BO energy and the
atomic forces for each random configuration RI, VðRIÞ,
and fs�ðRIÞ, respectively. This allows us to evaluate the
integrals in Eqs. (1) and (3) as an average of the integrands
over the Nc configurations (importance sampling). Thus,
we can compute the free energy and its gradient, and per-
form the first CG step to obtainH 1. In principle we should
reevaluate BO energies and forces for the supercell at each
CG step j, a very time-demanding task as generally hun-
dreds of steps are needed to converge. This can be avoided
with a reweighting procedure. We introduce the reweighting
�H j

ðRIÞ=�H 0
ðRIÞ factor (equal to one in the first j ¼ 0

step) in the importance sampling evaluation of the integrals.
Namely, FH½H j� and rF H½H j� are obtained as

F H½H j� ’ FH j
þ 1

Nc

XNc

I¼1

½VðRIÞ �V jðRIÞ�
�H j

ðRIÞ
�H 0

ðRIÞ ;

(4)

rF H½H j� ’ �X
st��

Est��

H j

1

Nc

XNc

I¼1

~fs�H j
ðRIÞut�I

�H j
ðRIÞ

�H 0
ðRIÞ ;

(5)

where the equality holds for Nc ! 1. Including the
reweighting factor, we can use the BO energies and forces
of the configurations created with the initial �H 0

ðRÞ distri-
bution also for the following j CG iterations. However,

if ð1=NcÞ
PNc

i¼1 �H j
ðRiÞ=�H 0

ðRiÞ deviates substantially

from one, F H½H j� and rF H½H j� cannot be accurately

evaluated anymore as the initial set of configurations does
not represent closely �H j

ðRÞ. When this occurs, we use the

probability distribution of the current step �H j
ðRÞ to create

a new set of configurations for which we recompute atomic
forces and BO energies to be used in the present and
subsequent CG iterations. The process continues until the
gradient vanishes.
We apply this method to stoichiometric PdH, PdD, and

PdT. Total energies, atomic forces, harmonic phonons, and
deformation potentials needed for the Eliashberg functions
are computed with density-functional theory and linear
response [32,33]. We use the Perdew-Zunger local-density
approximation [34] and ultrasoft pseudopotentials [35].
We first demonstrate the capability of our developed

method to obtain the free energy as a function of tempera-
ture. We calculate F H½H � and rF H½H � from a model
potential combining the ab initio harmonic potential with a
fourth-order on-site anharmonic potential fitted to the
density-functional theory total energies [36]. The potential
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satisfies the symmetries of the rock-salt structure [18] and
has also been used to study cubic ferroelectrics [37]. In this
system anharmonic forces are short range and, conse-
quently, phonon dispersions calculated with the model
potential and with ab initio forces are in close agreement
(see the Supplemental Material [38]). The use of the model
allows us to estimate the free energy at several volumes and
temperatures very efficiently. Minimizing the free energy
we obtain the lattice parameter of each isotope as a function
of temperature. The absolute values of the lattice parameters
and the thermal expansion coefficients (see Fig. 1) are in
good agreement with measurements [12,20,39].

Once the equilibrium volumes are determined, we
obtain the SSCHA phonon dispersions computing the
forces on the fRIgI¼1;...;Nc

configurations completely from

first principles [36], overcoming the approximation of a
model potential. The results are shown in Fig. 2 and
compared with available experimental data on deuterium
and tritium deficient samples. The breakdown of the har-
monic approximation is evident in all systems, particularly
in PdH and PdD displaying imaginary phonon frequencies.
The anharmonic correction given by the SSCHA is larger
than the harmonic phonon frequency itself, invalidating
any possible perturbative approach. Interestingly, both
the low-energy acoustic and high-energy optical modes
are affected by anharmonicity even if the largest correction
involves the H-character optical modes. At zone center the
PdH optical modes are degenerate at 488 cm�1, in good
agreement with inelastic neutron and Raman experiments
[10–13] (around 450–472 cm�1 at different temperatures
and H concentrations). Since the H atom is smaller than the
octahedral void in the Pd fcc lattice, hydrogen vibrations
are characterized by very anharmonic rattling modes. This
is confirmed by the weak mass dependence of the root-
mean square displacement of hydrogen (0.55 a.u. in PdH,

0.48 a.u. in PdD, and 0.44 a.u. in PdT at 0 K), which does
not scale according to the harmonic M�0:5 relation.
From the calculated phonon spectra we obtain the

Eliashberg function as

�2Fð!Þ ¼ 1

Nð0ÞNkNq

X
kqnm

X
st���

�s�� ðqÞ�t��� ðqÞ
2!�ðqÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MsMt

p

� ds�kn;kþqmd
t��
kn;kþqm�ð�knÞ�ð�kþqmÞ

� �ð!�!�ðqÞÞ; (6)

0 100 200 300
T (K)

0

5

10

15

20

25

d(
ln

 a
)/

dT
 (

x 
10

-6
K

-1
)

PdH
PdD
PdT
Exp. PdH0.7

Exp. PdD0.7

0 50 100 150 200 250 300

T (K)

7.71

7.72

7.73

7.74

7.75

7.76

7.77

7.78

a 
(a

.u
.)

PdH
PdD
PdT
Exp. PdH Schirber et al.
Exp. PdD Schirber et al.
Exp. PdH Ross et al.

FIG. 1 (color online). Equilibrium lattice parameters as a
function of temperature for PdH, PdD, and PdT compared to
experimental results [12,20]. In the inset the calculated thermal
expansion coefficients are shown together with the measured
values in Ref. [39].
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FIG. 2 (color online). Harmonic and SSCHA phonon spectra
calculated for PdH (a), PdD (b), and PdT (c) at the equilibrium
volume at 0 K. The experimental results obtained for nonstoi-
chiometric PdD0:63 [14] and PdT0:70 [15] are shown. In the right
panels the PDOS projected onto Pd and H atoms is plotted within
the harmonic approximation (dotted lines) and the SSCHA
(solid lines).
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where ds�kn;kþqm ¼ hknj�V=�us�ðqÞjkþ qmi is the defor-
mation potential, jkni is a Kohn-Sham state with energy
�kn measured from the Fermi level �F, Nk and Nq are the

number of electron and phonon momentum points used for
the Brillouin-zone (BZ) sampling, and Nð0Þ is the density
of states per spin at �F. We compute �2Fð!Þ in the
harmonic or anharmonic case by using the harmonic or
SSCHA phonon frequencies and polarizations in Eq. (6).
The electron-phonon coupling constant �, as well as the
logarithmic frequency average !log, are obtained as � ¼
2
R1
0 d!�2Fð!Þ=! and !log ¼ expð2=�R1

0 d!�2Fð!Þ�
ln!=!Þ [40]. We estimate Tc from the solution of the
single-band Migdal-Eliashberg equations, using �� ¼
0:085 as calculated in Ref. [17]. In the harmonic approxi-
mation the equilibrium volume of PdT is used for all
isotopes as, in this case, there are no imaginary phonons.
�2Fð!Þ functions are shown in Fig. 3 and the results for Tc

are presented in Table I.
In the harmonic approximation � is independent of the

mass and the isotope coefficient is determined by !log.

Thus, the heavier the isotope the lower Tc and � is close to
0.5. The harmonic approximation strongly overestimates
Tc, predicting very high values for all compounds. This
overestimation is due to the very soft H-character vibra-
tions that contribute as � / !�2 to the electron-phonon
coupling, leading to extraordinary values for �. This is

evident from the comparison between the phonon density
of states (PDOS) (see Fig. 2) and �2Fð!Þ (see Fig. 3).
In the SSCHA, both �, and consequently Tc, are sub-

stantially reduced due to the enhancement of the frequen-
cies induced by anharmonicity. The hardening is more
important the lighter the isotope as lighter atoms feel the
potential farther away from equilibrium because of the
fluctuations of the zero-point motion. This makes � mass
dependent and larger the heavier the isotope. Remarkably,
the differences in � explain the inverse isotope effect in Tc

and the value we obtain for the isotope coefficient � is in
good agreement with experiments (see Table I). The
obtained Tc’s are close to experimental results even if no
anharmonic corrections were incorporated into the defor-
mation potential. As noted by �2Fð!Þ and the integrated
electron-phonon coupling �ð!Þ in Fig. 3, H-character opti-
cal modes have the largest contribution to �, between 75%
and 79% of the total depending on the isotope. The con-
tribution of the low-energy Pd-character acoustic modes is
similar for the three hydrides. Thus, we conclude that
superconductivity and the inverse isotope effect in PHs is
driven by hydrogen anharmonicity.
In summary, we present a stochastic implementation of

the SCHA that allows us to treat anharmonic effects in the
nonperturbative regime. The method gives access directly
to the free energy of the system and is variational in the
free energy with respect to a trial harmonic Hamiltonian.
The method is applied to PHs calculating the free energy,
the thermal expansion, the anharmonic phonon spectra,
and the superconducting properties. We demonstrate that
superconductivity in PHs is phonon mediated and the
anomalous inverse isotope effect is due to the large anhar-
monicity of hydrogen vibrations, which is impossible to
treat within perturbation theory. Our findings open new
perspectives in the interpretation of reduced isotope effects
in superconductors. Moreover, we demonstrate that anhar-
monicity induces a huge suppression of Tc, almost a factor
of 10 in PdH. This poses the question of whether harmonic
Tc calculations in high-pressure metallic hydrides [41] are
overestimated [22], in particular, in the very similar PtH
[42]. More generally, our methodological developments
will allow us to investigate strongly anharmonic systems
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FIG. 3 (color online). �2Fð!Þ and �ð!Þ¼2
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!
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TABLE I. Calculated �, !log, and Tc values for PHs. !log

values are given in cm�1 and Tc’s in K. Experimental
values for Tc [6,7] are presented as well. The value of � between
isotopes PdA and PdB is calculated as �PdAðBÞ ¼
�ð lnTcðPdBÞ � lnTcðPdAÞÞ=ðlnMB � lnMAÞ.

Harmonic SSCHA Expt.

� !log Tc � !log Tc Tc [6] Tc [7]

PdH 1.55 205 47 0.40 405 5.0 9 8

PdD 1.55 150 34 0.46 304 6.5 11 10

PdT 1.55 125 30 0.48 257 6.9

�PdHðDÞ 0.47 �0:38 �0:29 �0:32

�PdHðTÞ 0.41 �0:29
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in the nonperturbative regime, ranging from ferroelectrics
[37], charge-density wave systems [43], and many more.
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[43] G. Grüner, Density Waves in Solids (Addison-Wesley,

Reading, MA, 1994).

PRL 111, 177002 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

25 OCTOBER 2013

177002-5

http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1038/35078037
http://dx.doi.org/10.1038/35078037
http://dx.doi.org/10.1103/PhysRevLett.83.404
http://dx.doi.org/10.1103/PhysRevLett.58.2333
http://dx.doi.org/10.1038/nature07981
http://dx.doi.org/10.1007/BF01398191
http://dx.doi.org/10.1103/PhysRevB.10.3818
http://dx.doi.org/10.1103/PhysRevB.10.3818
http://dx.doi.org/10.1016/0038-1098(84)90251-5
http://dx.doi.org/10.1016/0038-1098(84)90251-5
http://dx.doi.org/10.1016/0921-4526(91)90616-M
http://dx.doi.org/10.1016/0375-9601(77)90439-X
http://dx.doi.org/10.1103/PhysRevB.58.2591
http://dx.doi.org/10.1103/PhysRevB.58.2591
http://dx.doi.org/10.1016/0038-1098(73)90231-7
http://dx.doi.org/10.1016/0038-1098(73)90231-7
http://dx.doi.org/10.1103/PhysRevLett.33.1297
http://dx.doi.org/10.1103/PhysRevLett.57.2955
http://dx.doi.org/10.1103/PhysRevLett.34.144
http://dx.doi.org/10.1103/PhysRevLett.34.144
http://dx.doi.org/10.1103/PhysRevLett.39.574
http://dx.doi.org/10.1103/PhysRevB.44.10377
http://dx.doi.org/10.1103/PhysRevB.44.10377
http://dx.doi.org/10.1103/PhysRevB.45.12405
http://dx.doi.org/10.1103/PhysRevB.12.117
http://dx.doi.org/10.1103/PhysRevB.12.117
http://dx.doi.org/10.1103/PhysRevB.29.4140
http://dx.doi.org/10.1103/PhysRevB.29.4140
http://dx.doi.org/10.1103/PhysRevB.82.104504
http://dx.doi.org/10.1103/PhysRevB.82.104504
http://dx.doi.org/10.1103/PhysRevB.87.214303
http://dx.doi.org/10.1103/PhysRevB.87.214303
http://dx.doi.org/10.1103/PhysRevB.65.245402
http://dx.doi.org/10.1103/PhysRevB.65.245402
http://dx.doi.org/10.1103/PhysRevLett.100.095901
http://dx.doi.org/10.1103/PhysRevB.84.180301
http://dx.doi.org/10.1103/PhysRevB.84.180301
http://dx.doi.org/10.1103/PhysRevB.87.144302
http://dx.doi.org/10.1103/PhysRevB.87.144302
http://dx.doi.org/10.1103/PhysRevLett.106.165501
http://dx.doi.org/10.1103/PhysRevLett.106.165501
http://dx.doi.org/10.1063/1.4726161
http://dx.doi.org/10.1063/1.4726161
http://dx.doi.org/10.1021/jp044251w
http://dx.doi.org/10.1021/jp044251w
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1103/RevModPhys.73.515
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1103/PhysRevB.52.6301
http://dx.doi.org/10.1103/PhysRevB.52.6301
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.177002
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.177002
http://dx.doi.org/10.1088/0305-4608/10/3/006
http://dx.doi.org/10.1103/PhysRevB.12.905
http://dx.doi.org/10.1073/pnas.0914462107
http://dx.doi.org/10.1103/PhysRevLett.107.117002

