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We show that time reversal symmetry-breaking px þ ipy wave superconductors undergo several phase

transitions subjected to an external magnetic field or supercurrent. In such a system, the discrete Z2

symmetry can recover before a complete destruction of the order parameter. The domain walls associated

with Z2 symmetry can be created in a controllableway by amagnetic field or current sweep according to the

Kibble-Zurek scenario. Such domainwall generation can take place in exotic superconductors likeSr2RuO4,

thin films of superfluid 3He-A, and some heavy fermion compounds.
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Topological defect formation in the systems which
undergo nonequilibrium phase transitions has become a
subject of interdisciplinary research between high energy
and condensed matter physics [1–3]. The commonly
accepted cosmological model suggests that cosmic strings
can form according to the Kibble-Zurek (KZ) scenario
through the nonequilibrium phase transition in an expand-
ing Universe [4,5]. The KZ mechanism was tested in
experiments with quantized vortices produced by a rapid
quench or pressure sweep in a number of condensed matter
systems including superfluid 3He [6,7], superconductors
[8], and liquid crystals [9]. In these systems, the rate of
vortex formation agrees with KZ theory predictions. On
the other hand, the latest experiments [10] reveal no evi-
dence of quench induced vortex nucleation in superfluid
4He in contrast with the initial proposals [5,11].

The physics of domain walls (DWs) is less studied and
remains a large enigma both in cosmology and condensed
matter systems [4,12]. Indeed the observational constraints
required to accept the fact that the domain structure of
vacuum created during the cooling down and cosmological
expansion have disappeared at the early history of the
Universe [1]. A plausible explanation involves assumptions
of the initial baryon asymmetry or time inversion symmetry
violation which finally totally removes the domains of one
kind [12]. However, these speculations remain yet uncon-
firmed, which make theorists rule out the models with
discrete symmetry breaking since the mechanism of the
DWs’ disappearance remains a mystery [4].

One of the few known condensed matter systems which
allows us to study quench induced formation of cosmiclike
DWs is superfluid 3He [13]. Experimentally, DW genera-
tion was detected during cooling into the A phase or
warming up from the B phase [14,15]. However, with a
rapid temperature sweep one can hardly fine-tune the
parameters in order to produce DWs exclusively without
producing vortices pinned by DWs [15] and composite
defects [16]. Moreover, in a real system quench is always

spatially inhomogeneous, which provides important mod-
ifications to the physics of defect formation [17–20].
In this Letter, we propose a unique selective mechanism

of DW formation during a spatially homogeneous phase
transition in exotic superconductors with chiral px þ ipy

pairing symmetry. This mechanism is likely to be tested in
the recently discovered layered-perovskite superconductor
Sr2RuO4 [21,22]. According to evidence from a number of
experiments [22–24] it is assumed to be a chiral px þ ipy

wave superconductor with Cooper pairs having an effective
internal orbital momentum projection on the crystal an-
isotropy axis lz ¼ �1. Such a superconducting state has a
broken time reversal symmetry (BTRS) so the supercon-
ducting phase transition is determined by the spontaneous
Uð1Þ � Z2 symmetry violation analogously to the recently
proposed sþ is BTRS multiband superconductors [25].
The px þ ipy order parameter is realized also in a super-

fluid 3He-A phase confined in a thin slab [15,26–28]. To
exclude the Fréedericksz transition [27] of the orbital

anisotropy l̂ texture, the slab thickness and coherence
length should be of the same order. Such samples have
become available in recent experiments [26]. The proposed
mechanism can take place in heavy fermion compounds
such as UPt3. It has two superconducting phase transitions
in a zero magnetic field and the one at the lowest tempera-
ture is believed to be a Z2 symmetry-breaking one [29]. In
this case, one can expect additional interesting effects to
appear due to the interplay of antiferromagnetic and super-
conducting order parameters.
The two different BTRS vacuum states can be separated by

DWs which are known to support spontaneous supercurrent
generating magnetic fields [30]. However, high resolution
magnetic imaging microscopy experiments detected no stray
fieldswhich should begenerated byDWsabove the surface of
superconducting Sr2RuO4 [31–33]. Moreover, polar Kerr
effect measurements [34] also did not reveal chiral domains.
Thus, up until now no direct observation of DWs in
Sr2RuO4 was obtained although phase-sensitive Josephson
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spectroscopy experiments [35] have shown some evidence of
a dynamical domain structure. It has been suggested that in
some cases the DW generates only a very weak stray fields
[36]. The stray fields’ suppression can result also from the
multiband superconductivity [37] which, on the other hand,
can stimulate the proposed unconventional mixed statewith a
vortex coalescence in Sr2RuO4 [38].

In addition, it is possible that DWs disappear at some
stage of the superconducting transition in Sr2RuO4.
Therefore, the proposed method to create in a controllable
way an arbitrary initial concentration of DWs in Sr2RuO4

can prompt experimental identification of these defects.
Moreover, it can shed a new light on the fate of cosmic
DWs during the early history of the Universe.

To describe DWs separating different lz ¼ �1 vacuum
states we use the Ginzburg-Landau (GL) model of a chiral
spin triplet superconducting state in Sr2RuO4. This mate-
rial belongs to the tetragonal crystallographic symmetry
group D4h and has a strong crystal anisotropy which is
assumed to keep the orbital momentum of the Cooper pairs
parallel to the ĉ axis [22]. Moreover, recent experiments
reveal no Knight shift change during the superconducting

phase transition [39]. Hence, we assume that the spin d̂
vector direction is fixed.

The coordinate system is chosen so that the crystal an-
isotropy axis is ĉ k ẑ. Then the px þ ipy state corresponds

to the two-dimensional representation ��
5 ¼ ðkxẑ; kyẑÞ

and the order parameter is described by a complex
two-dimensional vector � ¼ ð�X; �YÞ [22,29,40]. Thus,
introducing chiral order parameter components �� ¼
�X � i�Y we consider a GL free energy density in the usual
dimensionless units:

f¼�j�þj2�j��j2þðj�þj4þj��j4Þ=2þ 2j�þ��j2
þ½�1ð����þÞ2þ c:c:�=2þjD�þj2þjD��j2
þ½ðD��þÞ�ðDþ��Þþ�2ðDþ�þÞ�ðD���Þþ c:c:�=2;

(1)

where D ¼ �irþA and D� ¼ Dx � iDy. The length is

normalized to the coherence length � and the vector poten-
tial A to the value �0=2�� where �0 is superconducting
flux quantum. Coefficients �1;2 determine the anisotropy in

the xy plane induced by tetragonal distortions. In the case
of �1 ¼ �2, the free energy, Eq. (1), was obtained from
the weak coupling microscopic theory [41]. The GLmodel,
Eq. (1), yields two degenerate ground states ð�þ; ��Þ ¼
ð0; 1Þ and (1, 0), which can be separated byDWs [30,36,42].

Let us now consider the px þ ipy superconducting film

in the xy plane. The film is supposed to be thin d � �, �,
where � is the London penetration length so that we can
use the standard approximation when the magnetic field
and order parameter are homogeneous along the z axis
inside the film. First we assume that the film is subjected
to the magnetic field parallel to the film plane H ¼ Hŷ as

shown in Fig. 1(a). In a thin film of a conventional super-
conductor, the Uð1Þ symmetry-breaking phase transition is
known to be of the second order and the critical field is [43]

Hc ¼
ffiffiffi
6

p
Hcm�=d where Hcm is a thermodynamic critical

field. However, in the Uð1Þ � Z2 superconductor one can
expect qualitatively new features. Indeed the in-plane cur-
rent couples the lz ¼ �1 order parameter components
which leads to the formation of a �px � ipy state with 0<

��1. The broken discrete symmetry subgroup is Z2 ¼
TU�ze

i�, where T is the time reversal and U�z is the �
rotation by around the z axis. Thus, at a certain critical field
H ¼ HZ2

the coupling can be so strong to put � ¼ 0 and

remove the Z2 degeneracy of the superconducting state.
Such symmetry restoration occurs via the second-order
phase transition which is determined by the coherence
length �Z2

which is naturally connected with the size of

the DW between different chiral domains. At the point of
the Z2 phase transition, the DW width �Z2

diverges and

chiral domains disappear. The two transitions were shown
to exist in the vortex phase of Sr2RuO4 under the action of

FIG. 1 (color online). Phase transitions in a thin film of the
px þ ipy superconductor. (a),(b) Second-order Z2 and Uð1Þ
transitions under the action of an external magnetic field and
(c),(d) first order transitions in an external current. By red solid
and dashed lines, the order parameter amplitudes �þ and ���
are shown in the Uð1Þ � Z2 phase. The energetically equivalent
state is obtained by interchanging values of �þ and ��. The
dotted blue line corresponds to the nondegenerate Uð1Þ phase
with order parameter components �þ ¼ ���. The magnetic
field and current are normalized to H0 ¼ Hcmd=ð2

ffiffiffi
3

p
�Þ and

j0 ¼ ðc=4�ÞHcm=
ffiffiffi
2

p
�, correspondingly.
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the magnetic field in the basal plane [41]. Here we will
focus on the structure of DWs and the physics of the
nonequilibrium Z2 phase transition in Sr2RuO4 under the
action of the external magnetic field and transport current.

The proposed scenario can indeed be confirmed by a
straightforward calculation. At first we consider an auxil-
iary problem. Suppose the Cooper pairs have constant
velocity directed along the x axis. Then the order parame-
ters can be represented as �� ¼ c�eikx where k is a
dimensionless Cooper pair velocity. Minimizing the free
energy, Eq. (1), by the amplitudes c� at fixed k, we obtain
two stable branches of the order parameter. (i) On the first
branch the magnitude of the order parameter components
is different jcþj � jc�j and they have opposite signs

jc�j2 ¼ 1� k2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� k2Þ2 � k4½ð1þ �2Þ=ð1þ �1Þ�2
p

2
:

Because of the invariance of GL theory, Eq. (1), with
respect to the replacement of cþ to c�, and vice versa,
the found solution is twice degenerate and corresponds to
the superconducting Uð1Þ � Z2 phase. This solution is
stable if the velocity of Cooper pairs is smaller than the

critical value jkj< kZ2
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ �1Þ=ð2þ �1 þ �2Þ

p
. Note

that kZ2
< kc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð1� �2Þ

p
where kc is the deparing

superfluid velocity which destroys the superconducting
state completely. (ii) On the second branch, the magnitudes
of the order parameter components are the same cþ ¼
�c�, where jc�j2 ¼ ½1� k2ð1� �2Þ=2�=ð3þ �1Þ.
Unlike the previous case, this solution is nondegenerate.
Therefore it corresponds to usual Uð1Þ superconducting
state. This phase is stable in the interval kZ2

< jkj< kc.

That is, we obtain an additional phase transition at
k ¼ kZ2

when the ground state double degeneracy is

removed and the corresponding discrete Z2 symmetry is
restored. The order parameter components change contin-
uously while we shift the k value through the Z2 critical
point; therefore, this is a second-order phase transition.

The solution of an auxiliary problem considered above
can be applied to find the critical fields of a thin px þ ipy

superconducting film. Indeed, we choose Landau gauge
Ax ¼ Byz [see Fig. 1(a)] and use a standard thin film

approximation assuming �� to be constant along the z
coordinate. Taking the z average of the free energy yields

an effective superfluid velocity k ¼ ffiffiffiffiffiffiffiffiffihA2
xi

p ¼ dH=
ffiffiffi
6

p
.

Then one immediately finds the critical fields values:

HZ2
¼

�
2

ffiffiffi
3

p
�=d

�
kZ2

Hcm; (2)

Hc ¼
�
2

ffiffiffi
3

p
�=d

�
kcHcm: (3)

The critical field HZ2
, Eq. (2), restores the discrete Z2

symmetry and the fieldHc, Eq. (3), is a standard critical field
of a thin superconducting film which suppresses supercon-
ductivity completely. The evolution of order parameter

components as functions of an applied magnetic field is
shown in Fig. 1(b). In this case, both Z2 and Uð1Þ phase
transitions are of the second order and characterized by
vanishing order parameters and divergent coherence lengths.
Naturally, the order parameter of a Z2 phase transition

can be chosen in the form �X ¼ ð�þ þ ��Þ=2. Indeed, �X

vanishes near HZ2
in the first phase and is identical to zero

in the second phase. To reveal the physical origin of the Z2

coherence length let us consider the structure of a DW in
the vicinity of a critical point. Here we can derive an
equation for the order parameter �X taking the other
component �Y ¼ ð�þ � ��Þ=2i to be constant �Y ¼
�YðH ¼ HZ2

Þ. In this way we assume the order parameter

amplitude to be a slowly varying real valued function
�X ¼ �Xðx; yÞ and obtain the single component GL
equation:

�Dr2
r�X þ a�X=2þ b�3

X ¼ 0 (4)

with coefficients D¼ð3þ�2Þ, a¼ð1þ�2=3Þ�
ðH2�H2

Z2
Þd2, and b ¼ 2ð3þ �1Þ. We can find a DW

structure as the topological soliton in Eq. (4) �X ¼ffiffiffiffiffiffiffiffiffi
a=b

p
tanhð ffiffiffiffiffiffiffiffiffiffi

a=D
p

xÞ. Since a� ðHZ2
�HÞ, we see that the

DW dissolves near the critical field HZ2
and the size of the

DW is proportional to �Z2
� ðHZ2

�HÞ�1=2.

The obtained Z2 transition provides a unique possibility
to create an arbitrary concentration of DWs in the px þ ipy

superconductor. We employ a generalization of the KZ
defect formation mechanism [4,5] to explore the DW
appearance during the nonequilibrium Z2 phase transition.
Let us assume that the external field decreases with the
constant rate �H so that HðtÞ ¼ ð1� t=�HÞHZ2

. Just below

the Z2 critical point H <HZ2
the growth of Z2 order

parameter fluctuations can be described by a linearized
time dependent GL equation [19,44]:

��0
Xt ¼ ½H2

Z2
�H2ðtÞ��X þr2

r�X; (5)

where we put �2 ¼ 0 for simplicity and normalize the
magnetic field by Hc given by Eq. (3). There are two
competing effects described by Eq. (5): exponential growth
and diffusive spreading due to the last term in the rhs.
Comparing the characteristic times of these processes we
can obtain a distance between defects just after the phase
transition as the minimal length scale which can grow. The
characteristic growth time is tZ � ffiffiffiffiffiffiffiffiffi

��H
p

=HZ2
, which is

also known as Zurek time [5,44]. This time should be
much less than the diffusive time L2�, where L is the
characteristic length scale. So, we obtain the distance

between defects L� ð�H=�Þ1=4. Thus, varying the rate
�H it is possible to create an arbitrary concentration
of DWs.
Applying an external transport current js along the film

plane [see Fig. 1(c)] it is possible to obtain the Z2 transition
of the first order. In this case a stable state can be found
only numerically. An example of a phase diagram where
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the Uð1Þ � Z2 and Uð1Þ phases coexist is shown in
Fig. 1(d). To realize the first order Z2 transition between
them the critical current of the Uð1Þ � Z2 state should be
smaller than that of the Uð1Þ state. Otherwise the system
will fall into a normal phase directly from the Uð1Þ � Z2

state. We obtain that such a regime is realized when
2þ ð1þ �2Þ2=ð1þ �1Þ> ð3þ �1Þ2=ð1� �2Þ. Therefore,
in a weak coupling model [41] with �1 ¼ �2 there is no
first order Z2 phase transition in the external current.

As usual the first order Z2 phase transition discussed
above occurs through the growth of the nuclei with sizes
larger than the critical one Rc [45]. It can be estimated

as Rc � ~fs=�~fb, where ~fs is the surface free energy

density and �~fb is the difference of bulk free energy
densities in two phases. Thus, the critical size is deter-
mined by the external current Rc ¼ RcðjsÞ due to the

bulk energy dependence �~fb ¼ �~fbðjsÞ. The distance
between DWs after the first order transition should be
determined by Rc, which can vary from 0 to 1 by setting
the value of js.

After the fast Z2 transition we expect that the volumes
occupied by domains of different chirality should be
almost the same. The DWs can be stabilized by geometri-
cal confinement in mesoscopic samples [46], pinning on
vortices and defects [42,47,48] preventing the formation of
a monodomain state. However, the maximal concentration
of DWs is determined by the rate of a magnetic field sweep
through the Z2 transition. Hence it is possible to create a
domain structure with domains of controllable size. Such a
mechanism provides a possibility of systematic studies of
DWs density in Sr2RuO4. It can help to resolve a contro-
versy between different experiments which are currently
incompatible with each other in the assumptions about DW
density [32,33].

Finally, let us discuss a way to test the evolution of the
domain structure during the transient processes following
the nonequilibrium Z2 phase transition. We suggest
employing transport measurements in the mixed state pro-
duced by magnetic field H k ĉ. The proposed method is
based on the observation that such a field creates
Abrikosov vortices which are known to remove the
Z2 degeneracy of the superconducting vacuum in the
px þ ipy superconductor. That is, vortices have different

core structures in the chiral domains with ðHl̂Þ> ð<Þ0
[28,49–51], where l̂ denotes the direction of the internal
orbital momentum of Cooper pairs which, in our case, is

l̂ k ĉ. We denote these vortex structures Nþ and N� vorti-
ces, correspondingly.

In the isotropic case �1 ¼ �2 ¼ 0 the order parameter
in axially symmetric vortices has the form �� ¼
j��jðrÞeim�	, where (r, 	) are polar coordinates with the
origin at the vortex center. Axial symmetry is preserved
provided the winding numbers are mþ ¼ 1, m� ¼ 3
for Nþ and mþ ¼ 1, m� ¼ �1 for N� vortices. Here we
note that Nþ and N� vortices have different viscosities due

to the difference in their core structures. Hence, the flux
flow conductivity has a chirality sensitive contribution


 ¼ 
0 þ 
1ðHl̂Þ. The flux flow conductivity can be
calculated within the framework of time dependent GL
theory [52]. In this way we obtain


=~
 ¼
Z 1

0

X
�¼�

½�j��j02� þ j��j2ðm2
� þ ��0Þ�d�: (6)

Here we normalize conductivity by ~
 ¼

nð�=LEÞ2Hc2=2H, where 
n is a normal metal conduc-

tivity, LE ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n=2�

p
�0=2�c is electric field penetration

length, and � ¼ r=LE. The function �0 ¼ �0ðrÞ satisfies
the Poisson equation

ðr2
����2�j�þj2�j��j2Þ�0¼

X
�¼�

��1m�j��j2: (7)

It determines electrostatic potential around the moving
vortex ’ ¼ �0ðrÞðer½v; z0�Þ, where v is the vortex velocity
and er ¼ r=r.

For example, taking �=Le ¼
ffiffiffi
6

p
we obtain that the

chirality sensitive part of conductivity is 
1 ¼
ð
þ � 
�Þ=2 ¼ 0:018
0. One can see that 
1 � 
0

and in this case the averaged over the sample flux flow
conductivity is �
 ¼ 
þSþ þ 
�S�, where S� are the
parts of the volume occupied by domains of positive and
negative chiralities.
During the transient process after the Z2 transition the

balance between Sþ and S� can be broken which will
make one chirality dominant. The weak Z2 asymmetry
required for such a scenario is provided by the presence
of vortices which were shown recently to stabilize the
monodomain chiral state in a 3He-A slab [28]. We expect
the transient evolution to be rather slow, allowing time-
resolved measurements of flux flow conductivity. The pos-
sible observation of its time evolution after the fast Z2

transition in Sr2RuO4 can signal a disappearance of
domains of one sign, the scenario which was initially
proposed in cosmology to eliminate cosmic DWs created
by quench in cosmological expansion [12].
To conclude, we have found a Z2 symmetry-breaking

phase transition inpx þ ipy superconductors. The transition

can be of the first order if driven by an external current and of
the secondorder under the action of an external field. That is,
applying an in-planemagnetic field to the thin superconduct-
ing film, one can drive it continuously fromUð1Þ � Z2 to the
simple Uð1Þ state. Such Z2 symmetry restoration is marked
by the dissolution of DWs. Decreasing the field through the
Z2 critical point at a constant rate, one can create a particular
concentration of DWs according to the KZ scenario. This
possibility can facilitate experimental identification of
superconducting DWs.
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W. Xu, Nature (London) 382, 334 (1996); C. Bäuerle,
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