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We study quasi-one-dimensional few-particle systems consisting of one to six ultracold fermionic

atoms in two different spin states with attractive interactions. We probe the system by deforming the

trapping potential and by observing the tunneling of particles out of the trap. For even particle numbers,

we observe a tunneling behavior that deviates from uncorrelated single-particle tunneling indicating the

existence of pair correlations in the system. From the tunneling time scales, we infer the differences in

interaction energies of systems with different number of particles, which show a strong odd-even effect,

similar to the one observed for neutron separation experiments in nuclei.
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Pairing between distinguishable fermions with an
attractive interparticle interaction leads to fascinating
phenomena in a variety of vastly different systems. In
metals at sufficiently low temperature, pairs of electrons
can form a superfluid, as described by Bardeen, Cooper,
and Schrieffer in their BCS theory of superconductivity
[1]. With the use of dilute gases of ultracold atoms, where
the interparticle interactions can be tuned freely using
Feshbach resonances [2], it was shown that such BCS pairs
can be smoothly converted into bosonic molecules [3],
which leads to a continuous crossover from a BCS-like
superfluid to a BEC of molecules [4–7]. In finite Fermi
systems, pairing has been studied extensively in the context
of nuclear physics [8–10]. Here, the pairing caused by the
attractive interaction between the nucleons leads to an
enhanced stability of systems with an even number of neu-
trons or protons [10]. For systems with fully closed shells—
the so-called magic nuclei—stability is further enhanced.

Recently, it has become possible to prepare finite
systems of ultracold fermions in well-defined quantum
states [11]. In such a system, one has direct experimental
control over key parameters such as the particle number
and the depth and shape of the confining potential.
Combined with the ability to tune the interparticle inter-
actions [2,12], this makes this system uniquely suited to
study pairing in a controlled environment.

In this work, we study how pairing affects few-particle
systems consisting of one to six ultracold atoms in two
different spin states, labeled j"i and j#i, confined in a
cigar-shaped optical microtrap [13]. We deterministically
prepare these systems in their ground state using the prepa-
ration scheme developed in Ref. [11]. Our microtrap has
typical trap frequencies of !k ¼ 2�� 1:488ð14Þ kHz [14]
in longitudinal and!? ¼ 2�� 14:22ð35Þ kHz [15] in per-
pendicular directions. In addition to the optical potential,
we can apply a linear potential in longitudinal direction by
applying a magnetic field gradient. A full description of

the potential shape as determined in Ref. [14] is given in
Ref. [16].
As in our few-fermion systems, all energy scales are

much smaller than @!?, the system can be treated as quasi-
one-dimensional [17]. In this one-dimensional (1D) envi-
ronment, the interaction between distinguishable particles
can be described by a contact interaction whose coupling
constant g"# can be tuned by a confinement-induced

resonance [18] [see Fig. 1(b)].
In a first set of experiments we study the emergence of

pair correlations in a two-particle system. Therefore, we
prepare two particles, one in state j"i and one in state j#i, in
the ground state of the trapping potential. To probe the
system, we employ the same method as described in
Ref. [14]: We lower the depth of the optical potential
such that there is a potential barrier of well-defined height
through which the particles can tunnel out of the trap. After
a certain hold time, we ramp the potential back up and
measure the number of particles remaining in the trap. By
performing many of these measurements at different hold
times, we measure the time evolution of the probabilities
P2ðtÞ, P1ðtÞ, and P0ðtÞ to find two, one, or zero particles in
the tilted potential. From these probabilities we get the
mean particle number �NðtÞ ¼ 2P2ðtÞ þ 1P1ðtÞ whose time
evolution is shown in Fig. 1(a) for three different values of
the interparticle interaction.
For a system of two noninteracting particles, the loss

follows an exponential decay with a tunneling rate �s0 �
30 s�1. In the presence of an attractive interparticle inter-
action (i.e., g"# < 0), the energy of the system is reduced.

This leads to an effective increase in the height of the
tunneling barrier, and therefore the tunneling slows
down. Consequently, the tunneling of the particles is no
longer independent and thus cannot be described by a
simple exponential decay.
To describe the correlated tunneling of the two particles,

we use a simple model that takes into account two different
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loss processes (see inset in Fig. 2). The first is pair tunnel-
ing, which we define as two particles leaving the trap at the
same time. The rate at which this process occurs is labeled
�p. The second process is subsequent single-particle tun-

neling. Here, one particle tunnels first, while the other
particle remains in the unperturbed ground state of the
trap. In this case, the first particle tunnels with a rate 2�s,
which is determined by the effective height of the tunnel-
ing barrier which in turn depends on the interaction energy
of the two particles. For the second particle, there is no
interaction shift, and consequently it leaves the trap with
the rate �s0 measured for the noninteracting system.

To relate these rates to our measured probabilities PiðtÞ,
we set up a set of rate equations that give the probabilities
to find two, one, or zero particles in the trap as a function of
the hold time. The probability P2ðtÞ to find two particles in
the trap decreases with the sum of the single-particle
tunneling rate 2�s and the pair tunneling rate �p

dP2ðtÞ
dt

¼ �ð2�s þ �pÞP2ðtÞ: (1)

This rate equation can be easily solved, and the decay law
for the two-particle probability reads

P2ðtÞ ¼ e�ð2�sþ�pÞt: (2)

The rate equation for the probability P1ðtÞ is given by

dP1ðtÞ
dt

¼ 2�sP2ðtÞ � �s0P1ðtÞ; (3)

where two-particle systems become one-particle systems
with the rate 2�s, where �s is the rate with which one
of the particles leaves the trap. These systems then decay
into zero-particle systems with the rate �s0 . Assuming a

perfect preparation fidelity for the initial sample, the initial
conditions for this equation are P2ð0Þ ¼ 1 and P1ð0Þ ¼
P0ð0Þ ¼ 0 and one obtains a probability

P1ðtÞ ¼ 2�s

2�s þ �p � �s0

½e��s0
t � e�ð2�sþ�pÞt� (4)

to find a single particle in the trap.
To describe our experiments, we have to take into

account two additional effects. The first is the finite pre-
paration fidelity 0 � f � 1, which defines the starting
conditions of the decay. The second is that changing the
magnetic offset field to tune the interaction strength affects
the magnetic moment of the atoms. This leads to a
state-dependent change in the shape of the tilted potential
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FIG. 1 (color online). (a) To study a system of two attractively
interacting fermions, we study its tunneling dynamics by creating
a barrier of fixed height and recording the number of particles
remaining in the trap after different hold times. We find that the
tunneling slows down as we increase the strength of the inter-
particle interaction from zero (blue squares) to intermediate
(orange dots) or to larger values (red triangles), where the solid
lines are fits according to the tunneling model described in the text
and the errors are the standard error of the mean of 100 individual
measurements. This shows the increase of the effective barrier
height due to the energy shift caused by the attractive interaction.
(b) Coupling constant g"# in the untilted potential as a function of

the magnetic field with ak ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=�!k

q
. Note that g"# depends on

the parameters of the deformed potential and is therefore given in
units of aref@!ref for the different measurements [16].

FIG. 2 (color online). Measured time evolution of the proba-
bilities P1ðtÞ and P2ðtÞ to find one (green dots) or two (blue
triangles) particles in the tilted potential at an intermediate
interaction strength of g"# ¼ �0:64. The blue solid line shows

a fit of Eq. (5) to P2ðtÞ with free parameters f and �2. The green
line shows the fit to P1ðtÞ with the single free parameter �p,

where the shaded region indicates the uncertainty that results
from our determination of the shape of the trapping potential.
For comparison, the dashed line shows the result from Eq. (6)
with �p set to 0, which is also consistent with our data. The

errors are the 68% confidence interval of about 100 individual
measurements. The inset shows a sketch of the loss processes
included in our tunneling model: subsequent single-particle
tunneling with rates �s and �s0 and direct pair tunneling with

a rate �p.
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as a function of the magnetic field [16]. Consequently, the
tunneling rates also obtain a spin dependence that leads to
the modified solutions

P2ðtÞ ¼ fe�ð�sj#iþ�sj"iþ�pÞt ¼ fe��2t (5)

and

P1ðtÞ ¼ f

�
�sj"i

�2 � �s0j#i
½e��s0 j#it � e��2t�

þ �sj#i
�2 � �s0j"i

½e��s0 j"it � e��2t�
�

þ ð1� fÞ
�
1

2
e��s0 j"it þ 1

2
e��s0 j#it

�
(6)

with the spin-dependent rate constants �sj"i, �sj#i, �s0j"i, and
�s0j#i. In Eq. (6) the first (second) term corresponds

to a former two-particle system where the j"i (j#i) particle
has tunneled first whereas the last term accounts for the
single-particle systems that are present due to the finite
preparation fidelity.

To determine the rates for single-particle and pair tunnel-
ing, we first fit our data for P2ðtÞ with Eq. (5) and extract the
combined loss rate �2 and the preparation fidelity. As fitting
all remaining parameters to our data for P1ðtÞ would be
unstable, we independently determine �s0j"i and �s0j#i in a

series of separate experiments with single j"i or j#i particles
[16]. To further reduce the number of fit parameters, we
make use of the fact that �sj"i and �sj#i are linked by the

shape of the potential that we can infer from our measure-
ments of �s0j"i and �s0j#i. As we already know, �2 ¼ �sj"i þ
�sj#i þ �p; this leaves only one free parameter for our fit:

the pair tunneling rate �p. Details on the fitting procedure

can be found in Ref. [16]. As an example, the measured
values for P2ðtÞ, P1ðtÞ, and the resulting fits for an interac-
tion strength of g"# ¼ �0:64 are shown in Fig. 2 [19].

For g"# >�0:59, we observe no pair tunneling. For g"# ¼
�0:64, we find a pair tunneling rate of�p=�2 ¼ 7ð4Þð10Þ�
ðstatÞðsystÞ%. Therefore, our data are consistent with a
model which only considers subsequent single-particle tun-
neling. For stronger interaction, pair tunneling is expected to
play a stronger role. However, in our measurements for
g"# <�0:64, the probability of finding a single particle in

the trap is only a few percent, which is as small as the errors,
and consequently we cannot resolve to which extent the two
particles tunnel as a bound object.

To compare the tunneling dynamics at different interac-
tion strengths that occur on time scales differing by almost
2 orders of magnitude, we rescale the data onto a common
axis by plotting P1ðtÞ as a function of the mean particle
number (see Fig. 3 left panel).

For a noninteracting system (blue), we find that the
probability of finding one atom follows that of completely
uncorrelated tunneling indicated by the black dashed
parabola P1 ¼ �N � �N2=2. For increasing attractive

interaction, the tunneling of the two particles is not uncor-
related anymore and we observe that the probability of
finding a single particle in the trap decreases dramatically.
This decrease in P1ðtÞ can be explained by the fact that for
larger interaction strengths the two-particle system expe-
riences a larger effective barrier height and the tunneling
rate �s of the first particle decreases, whereas the tunneling
rate �s0 of the remaining particle is not affected. This leads

to a decrease of the ratio �s=�s0 and therefore a lower

probability to observe a single particle in the trap, which is
well described by our tunneling model.
In the regime of weak interactions (g >�0:64) where

pair tunneling plays only a negligible role, we use our
model to determine the amount of interaction energy that
is released as the first particle tunnels from the trap, which
we call the separation energy. This is done in an iterative
process where we vary Eint and calculate �sj"i and �sj#i
using a WKB calculation until the tunneling rates match
the ones determined by a least-squares fit to the P1 data
(Supplemental Material [16]). One should note that our
approach does not take into account the wave function
overlap of the trapped state and the continuum state within
the tunneling barrier. This leads to a systematic error in
the interaction energy comparable to the one observed for
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FIG. 3 (color online). Probability of finding a single particle in
the trap plotted as a function of the mean particle number �N. The
solid lines show the results of fits to the data according to our
tunneling model (see Fig. 2). For a noninteracting system, the
probability follows the expectation value of completely uncorre-
lated tunneling given by the black dashed line. For increasing
interaction strengths, it becomes less likely to find a single
particle in the trap, which we interpret as a result of increased
pair correlations. To quantify this effect, we plot the interaction
energy up to intermediate interaction strength as a function of g"#
in the right panel. Here, pair tunneling is not considered in the
analysis as it does not seem to play an important role at these
interaction strengths.
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repulsively interacting systems [14,20], which has recently
been addressed in Ref. [21]. However, the qualitative
behavior of the separation energy at fixed particle number
or at fixed interaction strength is not expected to be altered
by this systematic effect.

For a two-particle system, the separation energy
corresponds to the full interaction energy of the system.
We clearly observe an increase of this interaction energy as
a function of coupling strength, which is plotted in the right
panel of Fig. 3. Since in a 1D system a decrease of the
energy of the two-particle ground state leads to a collapse
of the two-particle wave function, this corresponds to an

increase of the local pair correlation gð2Þð0Þ [22,23]. This
energy measurement therefore directly shows the appear-
ance of pairing in our attractively interacting two-particle
system.

After having used the two-particle system to understand
the tunneling dynamics and establishing a method to deter-
mine the separation energies of our system, we can now
study how the observed pairing affects larger systems. In
nuclear physics such pairing is one of the key ingredients
required to obtain a quantitative understanding of the
stability and binding energies of nuclei. One of its most
pronounced consequences is the odd-even effect: systems
with an even number of neutrons or protons have larger
binding energies and increased stability against decay. To
study this phenomenon in our model system, we measure
the separation energy for two- to six-particle systems with
an interaction strength of g"# � �0:6 (Supplemental

Material [16]) and observe a clearly enhanced stability of
systems with even particle number (see Fig. 4).

In addition to this odd-even effect, we also observe a
general decrease of the separation energy with growing
particle number. To quantify this effect, we consider the
single-particle levels in the trap as the shells of our 1D
system and use the difference in the separation energy
between open- and closed-shell systems to estimate the
contributions of intra- and intershell pairing. For the
two-particle system, the separation energy �E directly
corresponds to the pairing energy E00 of the two particles
on the lowest shell. For N ¼ 3, the third particle has no
interaction partner on its own shell. However, its separation
energy is still strongly reduced compared to that of the
noninteracting case. This suggests a strong intershell pair-
ing (E10) to the particles on the shell below. For N ¼ 4, the
separation energy is then given by the sum of the intershell
interaction energy E10 and the intrashell interaction energy
E11, which are of similar size.

To understand the observed scaling of the separation
energy with particle number, we first consider a weakly
interacting system. In this case, two particles on the same
shell obtain an interaction shift proportional to the cou-
pling constant, as they have the same spatial wave function.
To first order, particles on closed shells have the samewave
function, and therefore Pauli blocking prevents all other

particles on different shells from having any overlap with
them. Only in a second-order process where the wave
functions of the particles in the closed shell are modified
due to the interactions with a particle on a different shell
does the overlap become nonzero. From the fact that the
observed intershell pairing energy is comparable to the
intrashell pairing energy, we conclude that the different
shells have a significant overlap and our system is no
longer in the weakly interacting regime. Therefore, our
results can serve as a test for theories that predict the
disappearance of shell structures in strongly interacting
few-body systems [24,25].
In conclusion, we have used tunneling experiments to

study quasi-1D few-fermion systems with attractive inter-
actions and observed the emergence of correlations in the
tunneling dynamics. We have developed a model that
accurately describes the tunneling dynamics of the two-
particle system and used it to infer the presence of pair
correlations. We have then used this model to determine
the separation energies for larger systems and identified
the contributions of intra- and intershell pairing to the
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FIG. 4 (color online). Separation energies for systems of
N ¼ 1; . . . ; 6 particles at an interaction strength of g"# � �0:6.
The small difference in g"# for the different particle numbers is

due to the dependence of the coupling strength on the depth of
the optical potential. The separation energies are normalized by
the level spacing of the two uppermost trap states. The error bars
show the relative uncertainty originating from the statistical
errors of the fits of �N and �s0j"i. The arrows indicate the

contributions Eii and Eij of the intrashell (blue) and intershell

(green) interaction to the separation energy.
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observed odd-even effect. These measurements open the
door to study how the shell structure of a finite system
evolves in the BEC-BCS crossover [24,25]. This would
also be the first step towards studying the emergence of
BCS-like superfluidity in a finite system of ultracold atoms
through studies of rotational excitations [8,26].
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