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We present a systematic construction of effective Hamiltonians of periodically driven quantum systems.

Because of an equivalence between the time dependence of a Hamiltonian and an interaction in its Floquet

operator, flow equations, that permit us to decouple interacting quantum systems, allow us to identify

time-independent Hamiltonians for driven systems. With this approach, we explain the experimentally

observed deviation of expected suppression of tunneling in ultracold atoms.
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The idea to use well-controllable quantum systems for
simulations to explore physical phenomena has created big
expectations to answer questions that exceed our computa-
tional and analytical means. In particular, strongly corre-
lated many-body states, as they typically occur in flat-band
systems [1–3], readily push us to our limitations of classi-
cal simulations.

Suitably driven systems can be used to mimic the dy-
namics of essentially any Hamiltonian, but the precise
identification of such an effective Hamiltonian for given
driving parameters is a big theoretical challenge. This can
be exemplified by the dramatic increase of complexity in
going from the static to the driven two-level system. The
former is a standard textbook toy model; the latter is
exactly solvable only in a few exceptional cases [4]. The
effective Hamiltonian of a given driven system is typically
found in an approximate manner. The deviations between
the actual and approximated dynamics accumulate in time
and become significant for sufficiently long times. In order
to perform precise quantum simulations it is therefore
crucial to develop tools that allow one to systematically
construct effective Hamiltonians with high accuracy.

As a prominent example of driving-induced effective
dynamics, we highlight shaken optical lattices [5,6], which
permit the engineering of the tunneling of ultracold
bosonic atoms confined in an optical lattice by appropri-
ately adjusting the driving parameters. This yields, e.g.,
dynamical localization [6,7] and provides a promising
route towards the simulation of artificial gauge fields
[8,9]. However, despite the proven success of the usually
considered effective Hamiltonian for high driving frequen-
cies, substantial deviations from theoretically predicted
dynamical localization have been observed in many-body
samples for moderate driving frequencies [6], which is in
striking contrast to the single-particle case, where the exact
dynamical localization occurs irrespectively of the driving
frequency [10,11].

In this Letter, we introduce a new approach to derive
effective Hamiltonians merging the concepts of Floquet
theory [12,13] and flow equations (FE) [14]. With this,

we provide an explanation for the experimentally observed
deviations [6] from the theoretically predicted suppression
of tunneling [5].
The starting point to arrive at an effective Hamiltonian is

a periodically driven Hamiltonian HðtÞ ¼ Hðtþ TÞ. After
full cycles of the driving, i.e., t ¼ nT with integer n,
the time-evolution operator UðtÞ ¼ T expð�i

R
t
0 Hðt0Þdt0Þ

(T denotes the time-ordering operator) can be written
as UðnTÞ ¼ e�iHeffnT , which defines the effective
Hamiltonian Heff [15]. The actual dynamics will follow
the dynamics UeffðtÞ ¼ e�iHeff t induced by the effective
Hamiltonian only stroboscopically, but in the regime of
fast driving, where ! exceeds the relevant scales of HðtÞ,
the effective dynamics is a good approximation also for
t � nT. The deviation between exact and effective dynam-
ics defines the unitary

UFðtÞ ¼ UeffðtÞUyðtÞ: (1)

Since UðtÞ coincides with Ueff at t ¼ nT, UFðtÞ is periodic
with period T, and equals the identity at multiples of the
period.
Given Eq. (1), the effective Hamiltonian can be obtained

from the Schrödinger equation ið@tUðtÞÞ¼HðtÞUðtÞ (@¼1)
and reads

Heff ¼ UFðtÞHðtÞUFðtÞy � iUFðtÞð@tUFðtÞyÞ: (2)

Thus, the effective Hamiltonian is found after performing a
periodic time-dependent unitary transformationUFðtÞ such
that the resulting transformed Hamiltonian is time indepen-
dent and UFð0Þ ¼ 1. In practice, finding this exact unitary
transformation is an extremely difficult task. Here we
present a method, using an unconventional approach, that
allows one to systematically obtain the effective
Hamiltonian up to a required accuracy.
We use the framework of Floquet theory which asserts

that the Schrödinger equation with a time-periodic
Hamiltonian HðtÞ ¼ Hðtþ TÞ has a complete set of solu-
tions j�kðtÞi that decompose into a phase factor and a
time-periodic state vector, i.e., j�kðtÞi ¼ ei�ktjukðtÞi with
jukðtÞi ¼ jukðtþ TÞi. Because of their periodicity, the
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state vectors jukðtÞi can be expanded in a discrete set of
periodic functions fnðtÞ, which are vectors in the space of
time-dependent functions defined in the interval [0, T). In
the following we will use the functions ein!t as basis and
associate with each such function a state vector jni in a
Hilbert space H T .

Any T-periodic operator AðtÞ ¼ P
nAne

in!t can now be
mapped to an operator in ‘Floquet space’

A ¼ X
n

An � �n; (3)

where the Fourier components An ¼ ð1=TÞRT
0 AðtÞe�in!t

act on the Hilbert space of the actual system, and the �n

acting on H T are defined by �mjni ¼ jnþmi [17].
Similarly, the time derivative �i@t is associated with

D ¼ 1 �!n̂; (4)

with the number operator n̂jni ¼ njni, so that the Floquet
operator KðtÞ ¼ HðtÞ � i@t is mapped to

K ¼ X
n

Hn � �n þ 1 �!n̂ (5)

¼ H0 � 1þ 1 �!n̂|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
K0

þ X
n�0

Hn � �n

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Kint

: (6)

Formally, this is equivalent to a time-independent
Hamiltonian of a composite system with a Hamiltonian
K0 for the individual components and an interactionKint.
Because of this analogy, techniques to treat interactions in
time-independent Hamiltonians are applicable.

If HðtÞ was time independent all Fourier components
Hn but the static H0 would vanish, so that the interaction
term Kint would vanish as well. Consequently, a static
Hamiltonian is equivalent to a noninteracting system in
the present framework. Our goal is, therefore, to find an
operator Uc that corresponds to a periodic unitary trans-
formation UcðtÞ according to Eq. (3), such that the trans-
formed Floquet operator describes two noninteracting

systems UcKUy
c ¼ Hc � 1þ 1 �!n̂. Once such a

transformation is found, the sought transformation reads

UFðtÞ ¼ Uy
c ð0ÞUcðtÞ, and the effective Hamiltonian is

given by Heff ¼ Uy
c ð0ÞHcUcð0Þ.

We target the required block diagonalization of the
Floquet operator with the method of flow equations
[14,18], which is considered a generalization of conven-
tional scaling approaches and is based on a unitary flow
that makes the Hamiltonian increasingly diagonal [19,20].
The method defines a family of unitarily equivalent time-
independent Hamiltonians related to each other by a con-
tinuous parameter l

dHðlÞ
dl

¼ ½�ðlÞ; HðlÞ�; (7)

where �ðlÞ is the anti-Hermitian generator �ðlÞy ¼ ��ðlÞ
of a unitary transformation. The boundary conditions are

such that Hðl ¼ 0Þ coincides with the given Hamiltonian,
and �ðlÞ needs to be chosen such that Hðl ! 1Þ is in the
desired form, i.e., typically diagonal or block diagonal. The
canonical approach [14] to eliminate an interaction Hint of
a Hamiltonian H ¼ H0 þHint is to define the flowing
HamiltonianHðlÞ ¼ H0ðlÞ þHintðlÞ and the corresponding
generator �ðlÞ ¼ ½H0ðlÞ; HintðlÞ�. The main advantage of
the FE method is that it permits an equal treatment of
different energy scales in a renormalization formalism,
and a focus on a special regime, e.g., low lying excitations,
is not necessary. This is important if one wants to study
dynamical properties in nonequilibrium situations [21,22].
The FE method is typically used to decouple an interact-

ing many-body system, e.g., the spin from the bosonic bath
in the spin-boson model [23]. Here, on the other hand, we
will use it to remove the interactionKint in Eq. (6). For this
purpose, we will define a flowing Floquet operatorKðlÞ ¼
K0ðlÞ þKintðlÞ and apply Eq. (7) analogously. Additional
care is however necessary in the choice of generator to
ensure that the unitary transformation Uc corresponds
indeed to a periodic time-dependent transformation. This
is the case exactly if Uc is invariant under the symmetry
transformation S¼1��1, i.e., SUcSy¼Uc, and exactly
generators of the form

P
n�nðlÞ � �n preserve this property.

The generator of interest for our purposes reads
[D, KintðlÞ]. This generator will induce a flow (dynamics
with the flowing parameter l) that comes to an end if the
interaction commutes with D. This, in turn, implies that
the interaction is trivial inH T; i.e., it is of the form ~H0 � 1
and the decoupling has been achieved. Equation (7) defines
an infinite set of nonlinear differential equations, so that an
exact solution can be found only in very exceptional cases.
We will therefore strive for a high-frequency expansion,
where this set of equations is truncated at a given power in
1=!. This requires a modification of the generator [20] as
discussed in Sec. I of the Supplemental Material [28]. In
Sec. II of the Supplemental Material [28] we also discuss
the driven two-level system for explanatory purposes and
reproduce [24] the energy shift up to fourth order in 1=!.
Here, however, we will focus on the shaken optical lattice
in order to address the above mentioned question of sup-
pressed tunneling.
The Hamiltonian of the one-dimensional shaken optical

lattice can be written, in the co-moving reference frame
[5], as HðtÞ ¼ Hs þHdðtÞ, with the Bose-Hubbard model

Hs ¼
P

iJðcyi ciþ1 þ cyiþ1ciÞ þU
P

in̂iðn̂i � 1Þ (with peri-

odic boundary conditions) and an additional driving term
HdðtÞ ¼ K cosð!tÞPiin̂i that describes the shaking. J
denotes the hopping matrix element between nearest-
neighbor sites and U is the on-site interaction energy.

The operators cðyÞi are the usual bosonic annihilation (cre-

ation) operators satisfying ½ci; cyj � ¼ �ij and n̂i ¼ cyi ci. In
lowest order in 1=! we find the desired unitary UFðtÞ to
read Uð0Þ

F ðtÞ ¼ expðiðK=!Þ sinð!tÞPjjn̂jÞ, so that the

transformed Hamiltonian reads
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~HðtÞ ¼ Hð0Þ
eff þ �HðtÞ; (8)

with the previously known [5] effectiveHamiltonianHð0Þ
eff ¼P

iJ
effðcyi ciþ1 þ cyiþ1ciÞ þ U

P
in̂iðn̂i � 1Þ and �HðtÞ ¼P

ið�þðtÞcyi ciþ1 þ ��ðtÞcyiþ1ciÞ. The effective hopping

matrix element reads Jeff ¼ JJ 0ðK=!Þ in terms of the

zeroth order Bessel function and ��ðtÞ¼Jðe�iðK=!Þsinð!tÞ �
J 0ðK=!ÞÞ is a small deviation. This effective Hamiltonian

Hð0Þ
eff is a good approximation for sufficiently large driving

! � fJ;Ug [5]. Experimentally, however, deviations from
this limiting case have been observed and, as we shall see, a
systematic improvement of Heff for a finite driving fre-
quency ! permits us to explain these deviations very well.

With Eq. (8) as the starting point, our approach yields

the effective Hamiltonian Heff ¼ Hð0Þ
eff þHð1Þ

eff þOð1=!2Þ
with

Hð1Þ
eff ¼ 2�ðK=!ÞUJ

!

X
i

cyi ðn̂i � n̂iþ1Þciþ1 þ H:c:; (9)

including effects �1=!, as described in more detail in
Sec. III of the Supplemental Material [28]. As a qualitative
change as compared to the lowest order effective

Hamiltonian Hð0Þ
eff , there is a tunneling interaction depen-

dent on site occupation, whose rate �ðK=!Þ ¼
2
P1

m¼1 J 2m�1ðK=!Þ=ð2m� 1Þ is given in terms of the
mth order Bessel functions J m. In contrast to the tunneling
term or the on-site interaction term of the Bose-Hubbard

Hamiltonian, Hð1Þ
eff cannot be diagonalized through a suit-

able choice of single-particle basis, which makes it difficult
to develop a simple physical interpretation. The effect of

Hð1Þ
eff is probably best demonstrated by its action on a Fock

state jni with well-defined particle number on each lattice
site. For such a state, the operators n̂i reduce to scalars

(n̂ijni ¼ nijni), such that Hð1Þ
eff reduces to a regular tunnel-

ing term with site-dependent tunnel rates. For a Fock state
jn0i with site-independent particle numbers, this rate is

even site independent
P

iðcyi ðn̂i � n̂iþ1Þciþ1 þ H:c:Þjn0i ¼P
iðcyi ciþ1 � cyiþ1ciÞjn0i, but only depends on the direction

of tunneling. That is, Hð1Þ
eff enhances the tunneling in one

direction and suppresses it in the other direction. The
directionality is determined by the sign of the driving
amplitude K and the interaction energy U as well as by
the specific value of K=!. On the other hand, for a
Fock state jndi with a large particle difference between
adjacent sites the tunneling rate depends on the

particle gradient
P

iðcyi ðn̂i � n̂iþ1Þciþ1 þ H:c:Þjndi �P
iðcyi ciþ1 þ cyiþ1ciÞjndiðni � niþ1Þ. In fact, similarly as

above the driving parameters can be tuned such that the
rate for tunneling events towards highly populated sites is
enhanced, which is impossible for the usual kinetic term of
the Bose-Hubbard model.

An advantage of the flow equation method over
other methods like perturbation theory is its systematics.

In Secs. IV and V of the Supplemental Material [28] we
explicitly show how this method permits, with little extra
effort, the identification of the effective Hamiltonian in first
order in one of the parameters but in all orders in the other
one. In the large interaction energy regime J � fU;!g we
obtain the effective Hamiltonian

HU
eff ¼Hð0Þ

eff �
X1
n¼1

J
Un

!n ð�þ
n Ĉ

þ
n þ��

n Ĉ
�
n ÞþOðJ2=!Þ (10)

and in the large tunneling regime U � fJ;!g

HJ
eff ¼ Hð0Þ

eff �U
X1
n¼1

J 0ðK=!Þn�1 J
n

!n ð�þ
n T̂

þ
n þ ��

n T̂
�
n Þ

þOðU2=!Þ; (11)

where

��
n ðK=!Þ ¼ ð�1Þn X1

m¼1

J mðK=!Þ 1þ ð�1Þm�n

mn (12)

and the operators Ĉ�
n and T̂�

n are defined recursively via
the relations

Ĉ�
1 ¼ T̂�

1 ¼
�X

i

cyi ci�1;
X
j

n̂jðn̂j � 1Þ
�
; (13)

Ĉ�
nþ1 ¼

�
Ĉ�
n ;

X
j

n̂jðn̂j � 1Þ
�
; (14)

T̂ �
nþ1 ¼

�
T̂�
n ;

X
j

ðcyj cjþ1 þ cyjþ1cjÞ
�
: (15)

Equation (9) is obtained from the first term of the series

in Eqs. (10) and (11) using ��
1 ¼�� and Ĉ�

1 ¼ T̂�
1 ¼

�2
P

ic
y
i ðn̂i� n̂i�1Þci�1.

For noninteracting particles, Hð1Þ
eff and all higher order

terms vanish and our result confirms [10,11] that Heff ¼P
iJ

effðcyi ciþ1 þ cyiþ1ciÞ is the exact effective Hamiltonian
independently of the value of J=!. Thus, for noninteract-
ing particles, the exact suppression of tunneling is expected
at multiples of the driving period whenever K=! coincides
with the zeros of J 0 even for slow driving.
With interacting particles, however, the exact suppres-

sion of the tunneling is not possible in general, since Hð1Þ
eff

and all higher order terms do not necessarily vanish, and
only an approximate suppression in the large-frequency
regime can be obtained. For moderate driving frequencies

! & 2J [6], Hð1Þ
eff is of comparable magnitude as Hð0Þ

eff and,

if Jeff ’ 0, Hð1Þ
eff describes the dominant tunneling mecha-

nism that can no longer be considered a small higher order
correction. In particular, as shown in Fig. 1, the tunneling
rate proportional to � is close to maximal for driving
amplitudes at which the rate JJ 0 vanishes. This explains
the recently experimentally observed deviations from
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predictions based on Hð0Þ
eff that are particularly pronounced

when the effective tunneling is expected to be vanishing.
For slower drivings, also higher order terms get more and
more important. Equation (12) predicts that not only is �
maximal when JJ 0 vanishes, but all j��

2n�1j show the

same property. Also the even coefficients are finite (though
nonmaximal) when JJ 0 vanishes, but rapidly tend to 0 for
increasing n.

An enhancement of the tunneling rate would also appear
in a more accurate description of the optical lattice system
than the Bose-Hubbard model, where next-nearest-
neighbor tunneling is neglected assuming that the trapping

potential is sufficiently deep [7,25].Hð1Þ
eff , however, appears

also for deep lattices and, as argued above, its signatures
can be experimentally observed even with a deep trapping
potential, where the Bose-Hubbard model is an excellent
approximation. This shows that particular care is required
in the identification of effective Hamiltonians and that
supposedly high-order contributions can take over a domi-
nant role.

The importance of accurate effective Hamiltonians and
their derivation with the present method are by no means
limited to the suppression of tunneling discussed above.
For example, in flat band systems a small interaction term
results in the emergence of strongly correlated states [26],
and only the correct identification of such a seemingly
small correction to the effective Hamiltonian will permit
the correct prediction of such states.

Since the FE have proven very valuable in the treatment
of nonperturbative effects, they bear great potential for
situations in which a clear separation of scales is no longer
valid. That is, the method presented here can deal with

driven strongly interacting systems and identify driving
schemes that simulate, e.g., three-particle interactions.
As a final remark, we would like to mention that

our approach shows an equivalence between the time-
independent and the time-dependent FE [27]. In our treat-
ment, we use the framework of time-independent FE to
treat time-dependent systems. Translating our analysis
from Floquet space back to the framework of time-
dependent operators, one neatly reproduces the formalism
of time-dependent FE. This equivalence is completely
general and not restricted to periodic Hamiltonians, since
one can always treat the time window of interest as the
fundamental period of driving. That is, our approach also
permits us to translate all the existing expertise on gener-
ators of time-independent FE to the much less mature field
of time-dependent FE. In particular, the time-dependent
canonical generator [27] appears as a natural extension of
the time-independent canonical one.
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