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Here, we report orbital-free density-functional theory (OF DFT) molecular dynamics simulations of the

dynamic ion structure factor of warm solid density aluminum at T ¼ 0:5 eV and T ¼ 5 eV. We validate

the OF DFT method in the warm dense matter regime through comparison of the static and thermody-

namic properties with the more complete Kohn-Sham DFT. This extension of OF DFT to dynamic

properties indicates that previously used models based on classical molecular dynamics may be

inadequate to capture fully the low frequency dynamics of the response function.
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The warm dense matter (WDM) regime defines a dense
plasma state where strongly coupled classical ions coexist
with partially or fully degenerate electrons [1]. The strong
ion coupling and the quantum behavior of the electron fluid
make simulation and modeling challenging, as traditional
expansion techniques of classical plasma physics are no
longer applicable and neither the kinetic nor the potential
energy can be treated perturbatively. Such strongly inter-
acting quantum many-body states of matter are found in
the interiors of Jovian planets [2,3] and in the crusts of
white dwarfs and neutron stars [4]. On Earth, they can be
reproduced in the laboratory through the use of gas guns,
pulsed power machines, diamond anvil cells, and through
laser-plasma interactions [5,6], where they play an impor-
tant role towards the success of inertial confinement fusion
research [7].

A fundamental quantity, directly accessible to measure-
ment, that describes the statistical and thermodynamic
properties of theWDM state is the dynamic structure factor
(DSF) [1]. For a system in thermodynamic equilibrium, the
DSF gives its response to fluctuations of frequency ! and
wave number k, and is defined as

Sðk; !Þ ¼ 1

2�N

Z
ei!th�ðk; tÞ�ð�k; 0Þidt; (1)

where N is the total number of particles, and h. . .i refers to
an ensemble average. Here, � is the Fourier transform of
the real space time-dependent density distribution

�ðk; tÞ ¼ XN
j¼0

exp½ik � rjðtÞ�: (2)

Since the x-ray scattering cross section is directly propor-
tional to the DSF of the electrons [8,9], laboratory experi-
ments can provide an important tool for the validation and
verification of theoretical models of WDM [10,11].

Electrons in the plasma may occupy either free or bound
states [12]; hence, the DSF contains features that are

widely spread in frequency. On the high frequency side,
it exhibits plasmon resonances which have been exten-
sively discussed in the context of WDM and compared
with x-ray scattering data from laser produced plasmas
[8,13,14]. On the other hand, the ion-acoustic modes in
the structure factor are separated by 2@!p � 10–100 meV

in most WDM states [11], where !p is the ion-plasma

frequency. We refer to this low frequency part of the DSF
as the ion-ion structure factor. The diagnosis of ion-
acoustic dynamic modes in WDM has so far remained
elusive due to the stringent requirements in photon number
and bandwidth, which is considerably smaller than the
bandwidth of any laser generated x-ray probe radiation.
Accordingly, these modes cannot be resolved. In view of
these limitations, most studies to date have concentrated
on the evaluation of static (i.e., frequency integrated)
structure factors with either semianalytical techniques or
by solving the hypernetted chain equations [8,11,15–17].
Nevertheless, several questions on the intensity and spec-
tral distribution of the ion-ion correlation function remain
open [18]. These must be solved if accurate measurements
of the equation of state are required. Also, since the ion-ion
correlation function is related to the transport properties
of the ions, knowledge of this term is essential for the
understanding of the long-standing problem of energy
equilibration in WDM [19–22].
Here, we present, for the first time, exact calculations of

the ion-ion dynamic response that goes beyond approxi-
mate approaches used previously [1,23–25]. While a num-
ber of different theoretical approaches have been proposed
to describe Sðk;!Þ, where, in the case of an isotropic
system, we can assume that the structure factors depend
only on the absolute value k � jkj, none to date have used
self-consistent quantum simulations.
Since an accurate calculation of the DSF requires en-

semble averages over a large number of particles and long
time scales, the full Kohn-Sham density-functional theory
(KS DFT) still remains computationally prohibitive in
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WDM regimes. The computational expense is due to the
finite temperature treatment of electronic orbitals; these
are filled according to the Fermi-Dirac distribution, which
becomes smoother and broader as the temperature
increases. Therefore, to capture the behavior of all ther-
mally excited electrons requires a considerable number of
partially filled states to be orthogonalized, a task that grows
as the cube of the system size N. In order to take advantage
of the largest possible number of particles in the simulation
volume and maximize the computational speed, here we
have instead adopted an orbital-free DFT (OF DFT)
approach. In this technique, the electron energy functional
is described entirely in terms of the electron density, with-
out the need to solve for the wave functions.

The first step of our work consisted of comparing the
static thermodynamic properties of the KS DFT and OF
DFT results. All DFT simulations were performed using the
ABINIT package [26–28]. We considered, as an example, a

solid density aluminumplasma (� ¼ 2:7 g cm�3)with tem-
perature T ¼ 0:5 and T ¼ 5 eV. The corresponding ion
density is n ¼ 6:02� 1022 cm�3 with a Wigner-Seitz
radius of a ¼ 2:99aB (aB is the Bohr radius).

The KS DFT simulations were performed using the
projector augmented wave framework [29]. To evolve the
ion trajectories, we performed molecular dynamics simu-
lations using a 108 ion cubic supercell in the isokinetic
ensemble, with periodic boundary conditions applied. The
kinetic energy was maintained constant through the use of
a Gaussian thermostat. The cell was evolved to a simula-
tion length up to 1 ps and in time steps of 2 fs. In each time
step, the DFT equations for the electrons are solved in the

Born-Oppenheimer approximation; ion positions are then
updated classically according to the electrostatic forces
computed from the known ion positions and the ‘‘frozen’’
electron charge density. The system is modeled in full
thermodynamic equilibrium, with equal electron and ion
temperatures. Brillouin zone sampling was performed at
the mean value point [30]. Exchange and correlation (XC)
were treated within the generalized gradient approximation
of Perdew, Burke, and Ernzerhof [31]; electron interactions
were described using a three valence electron projector
augmented wave pseudopotential. The plane wave and
augmentation cutoff energies were 952 and 2720 eV,
respectively, ensuring convergence in the electronic den-
sity of states.
In OF DFT, the absence of electron wave functions

requires that the kinetic energy must be a functional of
electron density only. Our simulations were carried out
using the Thomas-Fermi module of ABINIT with the XC
terms treated within the local density approximation.

FIG. 1 (color online). Pressure of warm dense aluminum at
solid density extracted from KS DFT (dotted line) and OF DFT
(solid line). The two methods converge for T * 2 eV. The
convergence is highlighted by the inset, which shows the ratio
between the OF DFT and KS DFT pressures. The dashed line
represents OF DFT calculations performed without treating
exchange and correlation, indicating the importance of these
terms in this temperature regime.

FIG. 2 (color online). The SSF for warm dense aluminum
calculated from MD with the Yukawa potential (dashed line),
Yukawaþ SRR potential (dot-dashed line), OF DFT (solid line),
and full KS DFT (dotted line). The results shown here are for
T ¼ 0:5 eV (top panel) and T ¼ 5 eV (bottom panel).
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The local density approximation and generalized gradient
approximation have shown remarkable agreement in
describing the properties of bulk aluminum [32] and are
not expected to make significant differences to the dynamic
or thermodynamic properties of the system. Replacing the
kinetic energy functional introduces an error at lower
temperatures where the system is dominated by bound
electrons; we expect the error introduced to diminish
with increasing temperature [33]. The OF DFT simulations
contained 864 atoms and utilized a bulk-derived local
pseudopotential. This pseudopotential was checked for
accuracy by reproducing the electron density within a
bulk material; details of this process and pseudopotential
regularization can be found in Ref. [34]. Trajectories were
evolved over a simulation length of 5 ps, using a time step
of 0.25 fs. The time step was chosen to ensure energy
conservation within the ion subsystem, while the simula-
tion length was chosen to give high resolution DSF data.
The DSF was then calculated using the final 1.5 ps of
the simulation. Performing these calculations to the neces-
sary accuracy requires considerable computational effort.
Both the KS DFTand OF DFT simulations were performed
using the massively parallel AWE supercomputer,
Blackthorn.

Figure 1 compares the pressures calculated with both KS
DFT and OF DFT over a range of temperatures and
demonstrates that OF DFT reproduces well the KS DFT
thermodynamic pressure above � 2 eV. Also shown are

OF DFT results that have not been corrected for XC. The
relatively poor agreement of these data compared to the KS
DFT calculations indicates the importance of including the
XC term, as shown previously in Ref. [35]. Figure 2 also
shows agreement between OF DFT and KS DFT in the
static structure factor (SSF). Validation of the orbital-free
approach through comparison with the static and thermo-
dynamic properties has shown similar agreement in dense
hydrogen plasmas [36] and liquid aluminum [37] but here
is shown explicitly for the WDM region of phase space.
In addition to the DFT simulations, we have also con-

sidered a hybrid approach where the structure factor is
extracted from a classical molecular dynamics (MD) simu-
lation with an effective ion-ion potential given by [38]

Veff
ii ðrÞ ¼

�
Z2e2

r
þ ðZ2

c � Z2Þe2
r

e�br

�
e��r; (3)

where Zc ¼ 13 is the atomic number for aluminum, Z ¼ 3
is the charge state, and � is the Thomas-Fermi screening
length. The parameter b represents the effect of increased
nuclear repulsion when there is interpenetration of the
bound electron charge clouds around each nucleus. It
determines the onset of the short-range repulsion (SRR).
Setting b ! 1 gives the usual Yukawa potential. The
classical MD simulations were again run with 864 atoms
in 0.2 fs time steps for a simulation time of 1.5 ps. We used
the LAMPPS package [39] with a microcanonical ensemble
and a velocity rescaling thermostat.

FIG. 3 (color online). The DSF for warm dense aluminum calculated from MD with the Yukawa potential (dotted line), Yukawaþ
SRR potential (dashed line), and OF DFT (solid line). The results shown here are for T ¼ 0:5 eV (top panels) and T ¼ 5 eV (bottom
panels).
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As discussed in Refs. [11,38], the parameter b can be
determined by the requirement that the SSF obtained via
classical MD simulations reproduce the KS DFT SSF. This
is shown in Fig. 2. Classical MD simulations with the simpler
Yukawa potential underestimate the correlation in the system
when compared with the other methods. In Ref. [38], it was
argued that it is indeed necessary to include the SRR term in
the ion-ion potential in order for classical MD to match DFT
simulations. In our situation, this is achieved by taking the
parameter b to be 0:7a�1

B and 1:12a�1
B for T ¼ 0:5 and

T ¼ 5 eV, respectively. On the other hand, OF DFT SSF
compare very well with KS DFT results, without the need to
introduce any adjustable parameters.

In Ref. [38], it was also suggested that the agreement
between classical MDwith a Yukawaþ SRR potential and
KS DFT in the SSF implies that MD simulations can
then be used to calculate the DSF. However, while this
approach does represent a significant step forward,

compared to various semianalytical methods, it may not
capture the response for the case of a time-dependent ion-
ion interaction screened by a dynamical electron back-
ground. This is relevant to situations where the electron
oscillations couple with ion-acoustic modes, as described
through the plasmon-pole approximation [40,41]. Our OF
DFT approach is instead able to include such effects in a
consistent way, as the electron response is continuously
updated in time throughout the simulation.
We have calculated the DSF Sðk;!Þ at three different

values of k, to span the hydrodynamic (k ¼ 0:24a�1
B ), gen-

eralized hydrodynamics (k ¼ 0:51a�1
B ), and single-particle

(k ¼ 2:0a�1
B ) regimes [42]. The results of our calculations

performed using OF DFT and classical MD simulations
with both Yukawa and Yukawaþ SRR potentials are pre-
sented in Fig. 3. In the large k regime, allmodels converge to
the ideal gas result. However, at smaller values of k, the
differences between the calculations are substantial. While
classical MD simulations with a Yukawaþ SRR potential
agree better with OF DFT, there is still an important differ-
ence in the position of the ion-acoustic resonance. It is
informative to plot the position of the peak of the resonance
against the wave number, to yield the dispersion relation
for these different models, as shown in Fig. 4. Differences in
the dispersion relation result in different estimates to the
sound speed, given by d!=dkjk!0. The dispersion relation
is assumed to be linear below k ¼ 0:2a�1

B . It is clear that for
small k, theMDYukawaþ SRR potential matches well the
OF DFT results. This regime corresponds to modes that
have spatial correlations larger than the scale associated to
SRR; here, we expect the fluctuation modes to be sensitive
to the degree of SRR. However, as k increases and the
correlation scale is reduced below that of the repulsion,
the dispersion curves diverge, suggesting that the SRR
correction is no longer adequate to describe the particle
dynamics. At higher k still, the methods converge towards
the single-particle regime, which is less sensitive to the
specific form of the potential.
Although there is reasonable agreement between a classi-

cal MD simulation with a Yukawaþ SRR potential and the
OF DFT for warm dense aluminum, the applicability of the
classical method is limited by the fact that the ion-ion poten-
tialmust be known a priori. The proposedYukawa form is not
always reasonable, such as for metallized hydrogen [43] or
molecular plasmas. Our OF DFT quantum simulations of the
ion-ion structure factor provide a unique platform where
dense plasma theory can be tested with high accuracy.
This work was partially supported by the EPSRC Grant

No. EP/G007187/1 and by AWE PLC.
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