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We investigate the instabilities of a flat elastic ribbon subject to twist under tension and develop an

integrated phase diagram of the observed shapes and transitions. We find that the primary buckling mode

switches from being localized longitudinally along the length of the ribbon to transverse above a triple

point characterized by a crossover tension that scales with ribbon elasticity and aspect ratio. Far from

threshold, the longitudinally buckled ribbon evolves continuously into a self-creased helicoid with

focusing of the curvature along the triangular edges. Further twist causes an anomalous transition to

loops compared with rods due to the self-rigidity induced by the creases. When the ribbon is twisted under

high tension, transverse wrinkles are observed due to the development of compressive stresses with higher

harmonics for greater width-to-length ratios. Our results can be used to develop functional structures using

a wide range of elastic materials and length scales.
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Finding smart, reliable, and efficient strategies toward
developing functional shapes at smaller and smaller scales
has been a focus of intense research in elastic materials
ranging from synthetic yarns to atomically thin graphene
sheets and soft tissue [1–4]. Although buckling, wrinkling,
and creasing of thin sheets under compressive loading has
been widely studied recently [5–9], the instabilities and
shapes observed under the application of a twist have
received far less attention. Seminal analysis by Green
[10], confirmed later by numerical simulations [11,12],
showed that a ribbon under tension is unstable upon twist
due to the development of a spatially nonuniform com-
pressive stress. Under finite tensile load, transverse buck-
ling and localized loop formation has been shown using
numerical simulations [13–15]. In the case where the rib-
bon is inextensible, stress localization can occur [16].
However, no previous studies, either theoretical or experi-
mental, provide a comprehensive view of these
observations.

Here, we show that the various ribbon shapes are organ-
ized in a phase diagram using only two control parameters:
the initial tension and the twist angle. In this phase dia-
gram, the lines separating regimes—where helicoids,
buckled helicoids, and loops are observed—meet at a triple
point that sets the value of a characteristic tension T?. The
primary buckling mode switches from longitudinal to
transverse when crossing T?. Below T?, we characterize
a secondary instability leading to a loop, and show that the
development of creases affects this transition dramatically.
We find that the transitions studied here are different in
nature and more diverse than the ones observed with rods
[17]. We provide the first clear experimental observation of
the various buckling modes and further develop an inte-
grated understanding of their onset using simple scaling
arguments. Our results for the onset of longitudinal buck-
ling compare well to those reported using more elaborate

asymptotic analysis [12], and our approach allows us to
further characterize the onset of the transverse buckling
and the characteristic tension T?.
We study a ribbon of length L, widthW, and thickness h

that is held under tension F using clamped boundary con-
ditions at its ends, and then twisted through a prescribed
angle� about its central long axis. Other types of boundary
conditions may be considered but they are more difficult to
implement experimentally. Ribbons composed of biaxially
oriented polyethylene terephthalate with Young’s modulus
E ¼ 3:4 GPa (see the Supplemental Material [18]) and
L > 10W > 500h are used, unless otherwise stated. The
normalized twist angle � ¼ �ðW=LÞ and the nondimen-
sional tension T ¼ F=ðEhWÞ are used as control parame-
ters to describe the applied conditions as illustrated in
Fig. 1(a). Examples of a helicoid, buckled helicoids in
the longitudinal and transverse direction, a creased heli-
coid, and a localized loop obtained by simply varying T
and � are shown in Figs. 1(b)–1(f), respectively.
Phase diagram: T?.—We obtained the phase diagram by

measuring the critical angle for the longitudinal buckling,
the loop transition, and the transverse buckling for a ribbon
by increasing � in small increments from zero for an initial
tension T [see Fig. 1(g)]. Note that the local deformations
are within a good approximation in the linear elastic
regime of the material, while plastic deformations are
observed only near the edge of the ribbon for high twist
angle (� > 0:5) (see the Supplemental Material [18]).
Interestingly, we find that the three lines, corresponding
to the onset of the three instabilities mentioned above, meet
at a triple point characterized by the crossover tension T?.
Longitudinal buckling occurs below T? and the critical
angle �L increases with T. Above �L, the postbuckling
shape evolves progressively into a creased helicoid with
folds of alternating angles. Upon further twist, a secondary
instability occurs at a critical angle �T where the ribbon
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shape transforms into a loop with self-contact. The nature
of this transition depends on T. Below T?, the ribbon
switches dynamically into a loop configuration with �T
decreasing linearly with T. Above T?, the buckling is now
transverse with a critical angle, also denoted by �T , inde-
pendent of T over the range of tension explored. Further
twisting can lead to loops with self-contact. More compli-
cated self-wrapped configurations can occur for other rib-
bon aspect ratios and are not discussed here in the interest
of space. Also, it may be noted that changing the boundary
conditions affects the phase diagram but investigating this
is beyond the scope of the present study as we are primarily
interested in clamped edges.

Buckling and postbuckling: below T?.—In order to
obtain quantitative information on the shape of the ribbon,
we use a Varian Medical Systems microfocus x-ray com-
puter tomography instrument that allows ribbons with
lengths up to 15 cm to be fully scanned to resolutions
within tens of �m. The mean curvature H and the
Gaussian curvature K are then obtained to characterize
the shapes. Figures 2(a)–2(c) show the map of the curva-
ture superimposed on the ribbon before and after buckling.
A helicoid shape can be expected if a constant twisting rate
along the ribbon is assumed, which is confirmed by a zero
mean curvature [Fig. 2(a)]. When � ¼ �L, the ribbon
buckles longitudinally [Fig. 2(b)] with a pattern essentially

localized in the central portion of the ribbon, which on
further twist can develop creases where the curvature is
further localized along the sides of a triangle [Fig. 2(c)].
To understand this mode of buckling, we consider the

nondimensional longitudinal stress of a thin filament at a
distance y from the central axis given by �L þ 1

2�
2ðy=WÞ2,

where �L is the stress of the central line. Then, �L is set by
the condition of constant load h�i ¼ T ¼ �L þ �2=24,
where h::i stands for the average along the transverse

direction. Introducing �0 ¼
ffiffiffiffiffiffiffiffiffi
24T

p
,

�L ¼ 1

24
ð�20 � �2Þ: (1)

Plotting �L in Fig. 2(d), we note that buckling occurs
consistently above �0 when compressive stress develops
longitudinally. Just above �0, the width of the compressive
region of the ribbon is

Wc � W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3

�� �0
�0

s
and �L � � �0

12
ð�� �0Þ: (2)

Now, to develop the criteria for longitudinal buckling
as a result of the compressive stresses, we use energy
arguments by considering only the central part of the

FIG. 1 (color online). (a) A schematic of the ribbon illustrating
the applied tension and twist at the boundaries. Images of a
helicoid (b), a longitudinally buckled helicoid (c), a transversely
buckled helicoid (d), a creased helicoid (e), and a ribbon with a
localized loop (f). The images all correspond to a uniform green
biaxially oriented polyethylene terephthalate ribbon (W ¼
12:7 mm and h ¼ 76 �m). (g) The phase diagram of the shapes
observed along with the critical twist angle for the longitudinal
buckling (�L, solid circle) and the transverse buckling (�T ,5) as
a function of the tension (L ¼ 45 cm, W ¼ 25:4 mm, and
h ¼ 127 �m). Below a crossover tension T?, the buckling is
longitudinal. A secondary discontinuous buckling transition
leading to a loop with self-contact is observed (solid triangle)
upon further twist. A transverse buckled mode is observed for
T > T?. Upon further twisting, a loop with self-contact develops
(open circle).

FIG. 2 (color online). (a),(b) Ribbon shapes before and after
longitudinal buckling. (c) Creasing regime at higher twist. The
mean curvature is measured from 3D x-ray scans of the ribbon
and superimposed on the extracted shape according to the color
map shown. (d) �L as a function of T. All critical angles lie
above �0 ¼

ffiffiffiffiffiffiffiffiffi
24T

p
(dashed line), which corresponds to the theo-

retical critical twist angle for ribbons of vanishing thicknesses.
(e) �L � �0 as a function of T. The symbol corresponds to the
mean and the vertical bar to the standard deviation. For ribbons
with finite thicknesses, �L is offset by 9:3h=W. Same symbols as
in (d). (f) The longitudinal buckling wavelength �L normalized
by

ffiffiffiffiffiffiffiffi
hW

p
decreases with T in good agreement with Eq. (6).

PRL 111, 174302 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

25 OCTOBER 2013

174302-2



ribbon where quadratic dependence of the longitudinal
stress with y=W can be neglected. Let us consider a
buckled mode characterized by a typical amplitude A and
wavelength �. Then, the change in the elastic energy
density due to longitudinal buckling is the sum of three
contributions,

�UL � Eh�L

�
A

�

�
2 þ Eh3

12

�
A

�2

�
2 þ Eh3

12

�
A

W2
c

�
2
: (3)

Where the first term corresponds to the compressive energy
stored in the ribbon, and the second and third terms arise
because of the energy penalty due to bending in the longi-
tudinal and transverse direction, respectively. The ribbon is
unstable when the energy gain by releasing the longitudinal
compression overcomes the cost of bending. Then, by
inspection of Eq. (3), the change in stability occurs for a
critical twist angle � ¼ �L, and longitudinal wavelength
� ¼ �L, when

�L �� 1

12

�
h

Wc

�
2
��

�L

Wc

�
2 þ

�
Wc

�L

�
2
�
: (4)

The wavelength selected is associated with the most
unstable buckling mode characterized by the condition
@�L=@� ¼ 0 which leads to �L �Wc and the critical
longitudinal stress�L � ðh=WcÞ2. Because we do not mea-
sure �L, we find it more convenient to obtain an expression
for �L. Then, as can be seen from Fig. 2(d), �L is similar to
�0, and we can use the linearized expressions for �L and
Wc. Solving for �L, we obtain

�L � �0 � h

W
; (5)

and

�L �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hW=�0

q
: (6)

The expressions for �L and �L hold as long as �0 �
ðh=WÞ, which insures that � � W and the buckling is
confined in the central part of the ribbon. By plotting the
data where �L <W, we find that �L � �0 increases line-
arly with h=W [Fig. 2(e)] consistently with Eq. (5). The
corresponding measured �L is observed to decrease as a
function of T as shown in Fig. 2(f) consistent with Eq. (6)
with a numerical prefactor of 3.8. Further, the experimen-
tally obtained prefactors for �L � �0 and �L are consistent
with those seen numerically [12].

Keeping the tension below T < T?, and twisting the
ribbon far above the threshold for longitudinal buckling,
the pattern breaks the right-left symmetry by progressively
localizing the mean curvature along the lines of alternating
angles until a self-creased helicoidal structure forms as
shown in Fig. 2(c). The sharpness of the crease is more
pronounced at lower tension. This creased helicoidal pat-
tern, which is well known in origami, was demonstrated
previously for inextensible ribbons [16], but no satisfactory

explanation for the pattern selection is available. We find
the size of the triangle is not unique and is given by the
wavelength at onset as shown in Figs. 2(b) and 2(c),
suggesting that our stability analysis is actually a selection
mechanism for the observed pattern. Further, we find that
the creasing helicoid can be observed in a regime of higher
tension (�0 � h=W) than previously thought. The condi-
tion of inextensiblility, usually required to form localized
stressed regions in thin elastic plate, may be locally met
within the central compressed region of the ribbon.
Transverse buckling: above T?.—Transverse buckling is

observed above T? with buckling patterns that depend
mainly on geometrical parameters. When L � W, only
the fundamental mode is observed [Fig. 3(a)], which has
been seen numerically [14,15]. Further twisting leads to a
localized loop with a unique self-contact [Fig. 1(g)].
However, higher modes can be obtained by decreasing
h=W and L=W as shown in Figs. 3(b) and 3(c) where
transverse cross sections of ribbons (x ¼ 0) twisted above
�T can be seen. Further twisting leads to shapes with a
complex set of self-contacts. We measure the critical angle
for various combinations of geometrical parameters L=W
and h=W for T > T? and only consider critical twist angle
�T > 2�=ðL=WÞ where the fundamental buckling mode is

FIG. 3 (color online). (a)–(c) Measured transverse cross sec-
tion of ribbons (x ¼ 0) twisted above �T illustrating different
buckling harmonics depending on h=W and L=W (E � 1 MPa).
(d) Evolution of the critical angle �T for the transverse buckling
with the aspect ratio L=W of the ribbons. A given symbol
corresponds to a fixed length and thickness and varying width.
Four different lengths in the range 10–90 cm are investigated
with thicknesses h ¼ 76 �m (w), 254 �m (diamond), and
127 �m (square, down triangle, right triangle). A dashed line
drawn as a guide for the eyes separates the ribbon regime (large
L=W) with a plate regime (small L=W). (e) Evolution of �T with
h=W in the ribbon regime. All the data [same symbols as in (d)]
collapse on a single curve �T ¼ 4:4ðh=WÞ1=2 independent to L as
further shown in the corresponding log-log plot in the inset.
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observed. Figure 3(d) shows �T versus L=W, and where
each symbol corresponds to a different length. In Fig. 3(e),
we plot �T as a function of h=W and find that all the data

collapse onto a single line �T ¼ 4:4ðh=WÞ1=2. This trend
can be explained by a stability analysis of a thin transverse
section of the ribbon under compression. A compressive
transverse stress scaling as �T � E�4 has been argued
using scaling arguments [15]. The section buckles when
�T � Eðh=WÞ2, which corresponds to the buckling condi-
tion for a beam of lengthW and thickness h. This condition

leads to a critical angle �T � ffiffiffiffiffiffiffiffiffiffi
h=W

p
that only depends on a

geometrical parameter unlike �L, and is consistent with our
experimental data [see Fig. 3(e)]. Plastic deformations can
be observed near the edges for � > 0:5 and will have to be
taken into account in subsequent analysis for a more
precise prediction, although the scaling is expected not to
change.

Secondary instability: below T?.—We next discuss the
anomalous secondary transition to the loop in more detail
(see Fig. 4). While increasing � above �T [solid black
(blue) line], the ribbon dynamically jumps to a loop con-
figuration with self-contact. When � is then decreased
below �T , the loop remains stable demonstrating the hys-
teretic nature of the transverse buckling below T?. Upon

further decrease, the ribbon is no longer in self-contact
below the dashed red line, and the helicoid is recovered
below the solid gray (red) line. This transformation from a
shape with a negative Gaussian curvature (helicoid) to a
cylindrical shape (loop) is a way for a ribbon to release part
of its in-plane stress. But, surprisingly, the critical angle
decreases linearly with the tension. This feature is in sharp
contrast with the higher T regime. It means that a loop is
formed more easily at higher tension unlike rods where the
tension is reduced to trigger the loop transition [19]. The
self-rigidity that arises from the formation of creases at low
tension may well play an important role in this anomalous
loop transition. It is well known that shells with large
curvature have a great resistance against deformation
[20]. However, in the case of a ribbon, the rigidity mecha-
nism is spontaneous because no intrinsic curvature was
present in the prestressed flat ribbon.
Scaling for T?.—Now, by using the condition �L ¼ �T ,

we can obtain a scaling for the crossover tension T?.
Substituting the expressions for the critical angle for both
buckling modes in the thin ribbon limit (h=W ! 0), we
obtain T? � 0:8h=W. For the ribbon used in Fig. 1(g), our
scaling analysis gives T? � 4� 10�3, in good agreement
with our experimental data.
Fundamental questions on the onset of buckling, wrin-

kling, and crumpling of thin elastic materials and post-
buckling behavior is still a matter of significant debate
[21]. Because rarely has a single experiment embraced
such a diversity of shapes and behaviors without the need
for a complex coupling with a substrate [22,23], or fric-
tional walls [24,25], the twisted ribbon configuration
offers a new paradigm to understanding the strong
nonlinear and singular elastic theory as captured by the
Föppl-von Kármán equations.
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