
Majorana Edge States in Atomic Wires Coupled by Pair Hopping

Christina V. Kraus,1,2 Marcello Dalmonte,1 Mikhail A. Baranov,1,2,3 Andreas M. Läuchli,2 and P. Zoller1,2
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We present evidence for Majorana edge states in a number conserving theory describing a system of

spinless fermions on two wires that are coupled by pair hopping. Our analysis is based on a combination of

a qualitative low energy approach and numerical techniques using the density matrix renormalization

group. In addition, we discuss an experimental realization of pair-hopping interactions in cold atom gases

confined in optical lattices.
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At present there is significant interest in identifying
physical setups where Majorana fermions (MFs) [1]
emerge as a collective phenomenon in many-body quan-
tum systems [2]. The motivation behind this search is
twofold. First, the existence of MFs is intimately linked
to the concept of topological phases and their exploration.
Second, MFs provide, due to their topological nature, a
promising platform for topological quantum computing
and quantum memory [3–5]. In a seminal paper Kitaev
pointed out a route towards the realization of MFs in a
simple many-body system [6]: A 1D wire of spinless
fermions with a p-wave pairing can exhibit a topologically
ordered phase with zero-energy Majorana edge states
(MESs). The key ingredient here is the coupling of the
wire to a superconducting reservoir in a grand canonical
setting, which is induced in complex solid state structures
via the so-called proximity effect. Building on this result, a
remarkable theoretical and experimental effort has been
devoted to the search of alternative settings supporting
topological superconductivity in both 1D condensed matter
[7–18] and cold atom systems [19–23].

In contrast, we propose and investigate in this Letter an
alternative route to create MESs with cold atoms in optical
lattices in the absence of any reservoir. This is motivated by
a series of recent findings [24–26], pointing out the possi-
bility of stabilizing topological phases supporting MESs in
a purely number-conserving setting by mutually coupling
1D wires. We propose a scheme, based on a system of cold
atoms in state-dependent optical lattices [27] combined
with Raman assisted tunneling processes, which allows
us to generate ladder Hubbard-type Hamiltonians with
interwire pair tunneling and, at the same time, to suppress
interwire single particle tunneling. The wires are then
coupled in such a way that the number of particles in
each of the wires is conserved modulo 2, thus realizing a
Z2 mutual parity symmetry.

Below, we discuss first the implementation of the pair
tunneling terms, which relies on the energetic protection of
the parity symmetry. Then, we present a many-body study

of a lattice Hamiltonian consisting of two wires coupled by
pair tunneling by means of both analytical and density-
matrix-renormalization group techniques [28,29]. We pro-
vide qualitative and quantitative evidence of the emergence
of a topological phase supporting MESs, and discuss their
robustness with respect to disorder and possible realistic
imperfections.
Double wire system.—We consider the following

Hamiltonian [see Fig. 1(a)]

H ¼ �X
j

½ðtaayj ajþ1 þ tbb
y
j bjþ1Þ þ H:c:�

þW
X
j

ðayj ayjþ1bjbjþ1 þ H:c:Þ; (1)

where aj (a
y
j ), bj (b

y
j ) are fermionic annihilation (creation)

operators defined on two distinct wires a and b, respec-
tively. The first line describes intrawire single-particle
hopping with the corresponding amplitudes ta;b (in the

following we consider ta ¼ tb ¼ t as it does not affect
the results), and the last term is the interwire pair hopping
with the amplitude W. The choice of the Hamiltonian (1),
motivated by previous considerations of the number-
conserving settings [24], stems from global symmetries
and corresponding conserved quantities: Besides the total

number of particles, N ¼ Na þ Nb ¼ P
ja

y
j aj þ byj bj,

associated with the Uð1Þ symmetry, there is another con-
served charge—the parity P1 of one of the wires [say, the
wire a, P1 ¼ pa ¼ ð�1ÞNa] associated with a Z2 symme-
try [30]. The conservation is guaranteed by the last term in
H allowing only hopping of particles between the wires in
pairs, and is the key requirement to access a topological
phase with Majorana fermions. We now first show how
such dynamics can be generated with cold atoms in optical
lattices, and then present a many-body study of Eq. (1)
supporting the existence of MESs.
Pair hopping with cold atoms.—The basic idea behind

an atomic implementation of pair tunneling terms is
to introduce offsets in optical lattice potentials, which
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suppress the single particle hopping by energy constraints,
while an energy conserving pair hopping is allowed and
mediated by interactions (for an alternative implementa-
tion see [31]). An atomic setup illustrating these ideas is
given in Figs. 2(a)–2(d). We implement the two wires of
spinless fermions as a bipartite lattice for spinfull fermions
[32,33]. A typical lattice scheme is illustrated in Figs. 1(b)
and 1(c) for 40K atoms, where the two spin states are
encoded in the atomic states jF ¼ 9=2, mF ¼ 9=2i and
j7=2, 7=2i; combining laser beams with different polar-
izations, a lattice of arrays of plaquettes in the xy plane is
realized (see [34] for details on the laser scheme). Odd
(even) and even (odd) lattice sites j on the upper (lower)
wire trap the spin " and # components of the fermions, and
transitions between adjacent wells (and the associated spin
flip) are induced either by an rf field or by an optical
Raman transition with Rabi frequency� and ! the optical
frequency [35] [see Fig. 2(b)]. The spins are placed in a
spatially varying magnetic field with the gradient perpen-
dicular to the wires. Supplemented with a spin-independent
lattice along the y axes, this results in a spin dependent
energy offset [34]: the spins " and # on the (upper) a wire
have energies �2 and ��1, and the corresponding energies
on the (lower) wire b are ��1 and �2, respectively. If we
choose! ¼ �1 þ �2, our model reduces again to a 1D tight
binding model for spinless fermions hopping on the wires.

To understand the pair hopping mechanism, consider the
plaquette indicated in Fig. 2(a) by the dashed line. We
assume an auxiliary molecular site in the center of the
plaquette (indicated as (C) in Fig. 2(a), which traps both
" and # atoms, and is connected to the lattice sites on
the wire by a spin-preserving tunneling coupling with

amplitudes tam and tbm. Pairs of atoms occupying the
molecular site are assumed to interact via an onsite
interaction U, i.e.,

H0c ¼
X

c�ðj;jþ1Þ
Uay"ca

y
#ca#ca"c

� X
c�ðj;jþ1Þ

X
�¼a;b

tm�ðay"caj";� þ ay#cajþ1#;� þ H:c:Þ

where we adopt the notation c � ðj; jþ 1Þ for c on the link
j, jþ 1. In addition, rf or Raman induced spin-flip tran-
sitions are generated in this setup. However, they are off-
resonant and average to zero, so that they can be neglected
in the following [34]. We can now write the corresponding
Hamiltonian in a frame rotating with ! as

~Hh ¼ �2a
y
1aa1;a � �1a

y
2aa2;a � ð�ay1aa2ae

�i2�t þ H:c:Þ
þ �2a

y
1ba1;b � �1a

y
2ba2b

� ð�ay1ba2be
�i2�t þ H:c:Þð��0Þ X

�¼";#
ay�ca�c

þUay"ca
y
#ca#ca"c � tma½ay"cða1a þ a2bÞ

þ ay#cða1b þ a2aÞ þ H:c:�: (2)

For the sites on the two wires we have used the notation
a1";a ! a1a, a1#;b ! a1b and a2#;a ! a2a, a2";b ! a2b. The
first two lines are the Raman or rf hopping between sites

(a)

(c) (d)

(b)

(e)

FIG. 2 (color online). (a)–(d): Implementation of the pair
hopping: (a) Ladder setup as a combination of two wires with
opposite energy offsets (b). The dashed box denotes a single
plaquette, with site indices in parenthesis ð� � �Þ; tam, tbm are the
tunneling amplitudes from the a and b wire to the central sites,
respectively. Atoms in the center [(C)] of the plaquette interact
with strength U (shaded area). (b) The single wire is realized as a
bipartite lattice of " and # fermions with Raman-assisted tunnel-
ing (Rabi frequency�). (c),(d) Energy offsets along the diagonal
of the plaquette in (c) for the # resp, d) " species, and corre-
sponding virtual processes indicating pair tunneling (see text).
The energy offsets ��1 and �2 inhibit single particle hopping
between the wires, while the pair hopping respects energy
conservation. (e) Time evolution of the state ay1;a"a

y
2;a#j0i accord-

ing to the microscopic dynamics of ~Hh (see text): the blue
(red) curve indicate the population pa;bðtÞ ¼ hna=b;1na=b;2i as a

function of time.

tW

(c)

(b)

(a)

FIG. 1 (color online). (a) Ladder Hamiltonian: Atoms in the
ground states a and b confined in the upper resp. lower wire can
tunnel individually along the x direction, and can hop in pairs
between the wires. (b) Atomic scheme for 40K atoms: the two
states jF ¼ 9=2, mF ¼ 9=2i and j7=2, 7=2i serve as " and # spin
states in the microscopic implementation, while laser beams
of different polarizations realize the spin dependent potential
(see [34]). (c) Typical lattice structure which realizes arrays of
two-leg ladders: the circled areas correspond to the plaquette in
panel (a). Black arrows denote counterpropagating beams on the
xy plane with �z polarization, while red (blue) arrows describe
counterpropagating beams in the yzðxzÞ plane with �xð�yÞ
polarization with a �=4 angle with respect to yzðxzÞ.
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2 $ 1 with energies ��1 and þ�2, respectively, due to
absorption (emission) of a photon ! ¼ �1 þ �2, which is
tuned to compensate the energy difference. The third line
corresponds to the central site with interaction and hop-
ping. The last line then describes tunneling from the wires
to the central site.

Let us now analyze the various processes on the pla-
quette according to the Hamiltonian (2). First, single par-
ticle hopping between the wires is suppressed: consider an
atom, say in the upper wire a in lattice site 1 with spin " .
Spin-preserving tunneling is possible via the molecular
site along the diagonal of the plaquette (virtual processes
are indicated in Figs. 2(c) and 2(d). It corresponds to the
process "1a!"m!"2b , which is suppressed by the corre-
sponding energy offsets þ�2, 0, ��1. In a similar way, the
tunneling of the # atom along #2a!#m!#1b is also sup-
pressed by energy conservation. For pair hopping "1a#2a!
"#m!"2b#1b , however, the overall energy will be conserved,
since the two atoms can exchange energy via the interac-
tionU. After adiabatic elimination of the intermediate sites
when U, �1=2 � tam;bm, the resulting amplitude for the

pair-hopping term is [34]

W ¼ �
�
1

�2
� 1

�1

�
2 t2amt

2
bm

U
: (3)

In Fig. 2(e) we present a numerical analysis of the pair-

hopping dynamics of the state ay1;a"a
y
2;a#j0i subject to the

Hamiltonian ~Hh. Here, (in units of tam) tbm ¼ 1, �2 ¼
2�1 ¼ 2, U ¼ �20. As we discuss in [34], the pair
hopping term will generate further processes which can
be suppressed by tilting the plaquette. Finally, in fourth
order perturbation theory density-density interactions
between particles on one plaquette emerge. They are
induced by virtual processes where two particles from
the site j, j0 belonging to the same plaquette hop
into the intermediate sites, and subsequently hop back
to j, j0. The corresponding terms read Hdiag ¼
K
P

j;j0
P

�;�0¼";#
P

�;�0¼a;b nj�;�nj0�0;�0 , where K is of the

same order as W. Note that these perturbations are also
parity preserving. Further, as we show in [34], these terms
only have a quantitative effect on the Majorana physics.

Majorana edge states in coupled wires.—The presence
of a parity symmetry in Eq. (1) is at the heart of possible
topological phases. We have investigated the phase dia-
gram of H by means of both low-energy field theory
based on bosonization, and mean field arguments: both
approaches provide evidence of a superconducting phase
supporting MES (a detailed analysis is provided [34]). We
present here a numerical study by means of density-matrix-
renormalization group simulations. We start with a brief
description of the phase diagram of the system, and then
identify the topological phase supporting the MES accord-
ing to the following criteria: (i) two degenerate ground
states with different parities for the individual wires in the
case of open boundary conditions (OBCs), (ii) nonlocal

fermionic correlations between the edges, coming along
with (iii) topological order indicated by a degenerate
entanglement spectrum, and (iv) robustness of the above
properties against static disorder. In the following, we set
t ¼ 1 as the energy scale.
The phase diagram of the model can be divided into

three regions: a superconducting phase, an insulating
phase, and a region of phase separation. The superconduct-
ing phase is characterized by a homogeneous density,
leading superconducting correlations, and nonzero single-
particle gap � ¼ jE0ðNÞ � 1

2 ½E0ðN þ 1Þ þ E0ðN � 1Þ�j
for periodic boundary conditions (PBCs). Here E0ðNÞ is
the ground state energy for N particles. We find this phase
for small and moderate values of the pair hopping jWj & 1
and all fillings except n ¼ 1=2. At exactly half-filling, an
incompressible insulating phase is formed with exponen-
tially decaying superconducting correlations. For large
values of the pair hopping jWj � 1 we find phase separa-
tion with the formation of particle clusters. In the following
we concentrate on the superconducting phase and check
the criteria (i)–(iv). For our numerical analysis, we take
W ¼ �1:8 and the filling n ¼ 1=3 as representative values
resulting in a homogeneous superconducting phase for
system sizes L ¼ 12, 24 and L ¼ 36 with even number
of particles.
(i) The ground state degeneracy can be studied by look-

ing at the energy gap �EnðNÞ ¼ EnðNÞ � E0ðNÞ between
the ground state and the nth excited state. As shown in
Fig. 3(a), in the case of OBCs, the gap between the ground
and the first excited state �E1;OBC closes exponentially in
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FIG. 3 (color online). (a) Closing of the energy gaps with the
system size (L ¼ 12, 24, 36) for W ¼ �1:8 and n ¼ 1=3. For
OBCs, the gap �E1 closes exponentially (left panel), in contrast
to the polynomial closing in the case of PBCs (right panel, open
blue triangles). The energy gap �E2 closes polynomially inde-
pendent of the boundary conditions (right panel, red diamonds
for the OBC and closed triangles for PBC). Note that �E2;PBC ¼
�E1;PBC. (b) Nonlocal fermionic correlations Glj on the upper

wire for L ¼ 24. (c) and (d) Entanglement spectrum for the
system of the size L ¼ 24 shows double degeneracy for both the
OBC (c) and PBC (d).
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the system size (left panel) indicating the degeneracy of the
ground state in the thermodynamic limit. This is in contrast
to the case of the PBC that is depicted in the right panel of
Fig. 3(a) (blue open triangles). Here we find that �E1;PBC

closes linearly in the system size, and �E1;PBC ¼ �E2;PBC;

i.e., the first and second excited state are degenerate (blue
open and closed triangles). For the OBC, �E2;OBC also

closes linearly in the system size (red diamonds). We find
that the two degenerate ground states in the case of OBCs
differ by the parities of the individual wires. Note that for
the OBC we also have � ¼ 0.

(ii) The intrawire single-particle correlation function

Glj ¼ hayl aji for the system of the length L ¼ 24 is shown

in Fig. 3(b) for the case where l ¼ 1, 2 is close to the left
edge and j 2 ½l; L�. We see that Glj, being exponentially

small inside the wire, attains a finite value at the right edge
showing the existence of nonlocal fermionic correlations
typical for a system with MF edge states.

(iii) Topological order (TO) manifests itself in the
degeneracy of the entanglement spectrum (ES) [36–38]:

Let �A ¼ P
Nj�

ðNÞ
j �ðNÞ

j be the reduced density matrix of the

system with respect to some bipartition with support on

both wires, where �ðNÞ
j describes a pure state of N particles

with the corresponding eigenvalues �ðNÞ
j . In a topological

phase, the low-lying eigenvalues �ðNÞ
j are expected to be

doubly degenerate for each N, for both open and periodic
boundary conditions, as it is demonstrated in Fig. 3(c)
(OBC) and Fig. 3(d) (PBC) for a system of the size
L ¼ 24. Moreover, the distributions of the low-lying
eigenvalues as a function of N share the same patter in
the two cases. We have also verified that in the case of
hard-core bosonic ladders with pair hopping, the ES does
not show such structure, underlining the key role of Fermi
statistics in determining topological features of the paired
phase.

(iv) The robustness of the above properties against static
disorder is one of the key manifestations of a nonlocal
topological order. We model the disorder by adding the

term HVr
¼ P

jV
ðaÞ
j ayj aj þ VðbÞ

j byj bj to the Hamiltonian,

where Vð�Þ
j with � ¼ a, b are random local potentials

equally distributed in the interval ½�Vr; Vr�. We find that
even for moderate disorder Vr ¼ 0:1t, the ground state
remains doubly degenerate, and the system still exhibits
the nonlocal correlations [Fig. 4(a)] as well as the degen-
erate ES [Fig. 4(b)], indicating the presence of the topo-
logical order. For strong local disorder, however, the
topological effects disappear, as we checked, e.g., for a
value of Vr ¼ 1:5t. In addition, we have investigated the
effect of disorder in the pair hopping, which we model by

an additional term HWr
¼ P

jW
ðaÞ
j ayj a

y
jþ1bjþ1bj þ H:c:,

where we have taken Wj to be equally distributed within

the interval ½�Wr;Wr�. We find that even for Wr ¼ 0:1W
the topological properties of the system survive. As an

example, we present Fig. 4(c), the ES which maintains
its doubly degenerate structure.
Remarkably, the observed topological order and its con-

sequences are also stable against a single-particle hopping

H? ¼ P
itya

y
i bi þ H:c: between the two wires, which

breaks the parity of the wires and related Z2 symmetry.
As an example, we show in Fig. 4(d) the energy gap
�E1;OBC as a function of ty: The ground state of the system

remains degenerate up to values ty of the order of 0:1t

[Fig. 4(d)], in agreement with the prediction of
Refs. [24,25]. Note, however, that the dependence of
�E1;OBC on L changes from exponential to power law

[26]. This stability could be very important for experimen-
tal realizations of the model because the interwire single-
particle hopping is one of the most probable imperfections.
Detection.—The emerging Majorana states can be

detected following the proposals of Ref. [39], e.g., by using
standard quantum optics detection tools like time-of-flight
imaging and the spectroscopic technique to probe the
ground state degeneracy and the inherent nonlocal fermi-
onic correlations. Demonstration of a non-Abelian statistic
of the MFs, on the other hand, requires some dynamical
protocols resulting in the motion of MFs around each other.
In our setup, one could think of a generalization of the
ideas of Ref. [40] relying on single-site addressing avail-
able in current experiments with ultracold atoms [41,42].
Another possibility would be an atomic analog of the
fractional Josephson effect [17] using a properly shaped
external potential along the x direction.
Conclusions and outlook.—In summary, we have shown

how topological states of matter with Majorana fermion
edge states can be created in fermionic atomic ladders via a
pair-hopping Hamiltonian without any additional reservoir
or p-wave interaction. The proposed implementation of the
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FIG. 4 (color online). Effects of imperfections on the topo-
logical order (L ¼ 24, n ¼ 1=3, OBC). (a),(b) Effects of static
disorder: The nonlocal correlations (a) and the degeneracy of the
ES (b) indicated the topological state in the presence of disorder
with Vr ¼ 0:1t. (c) Effect of disorder in the pair hopping. The ES
remains degenerate. (d) Ground state degeneracy in the presence
of an interwire single-particle hopping H? ¼ P

itya
y
i bi þ H:c:
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pair-hopping interaction in a cold atom system can also be
used for the simulation of Abelian [43] and non-Abelian
lattice gauge theories [44]. Further, one might also think to
use it for the construction of an entangling quantum gate,
where the hopping of one particle (control) triggers the
tunneling of a second atom (target).
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