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We present the calculation of the cross section for Higgs boson production in association with a top

quark pair plus one jet, at next-to-leading-order accuracy in QCD. All mass dependence is retained

without recurring to any approximation. After including the complete next-to-leading-order QCD

corrections, we observe a strong reduction in the scale dependence of the result. We also show

distributions for the invariant mass of the top quark pair, with and without the additional jet, and for

the transverse momentum and the pseudorapidity of the Higgs boson. Results for the virtual contributions

are obtained with a novel reduction approach based on integrand decomposition via the Laurent

expansion, as implemented in the library, NINJA. Cross sections and differential distributions are obtained

with an automated setup which combines the GOSAM and SHERPA frameworks.
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Introduction.—The evidence of the existence of a new
particle of mass between 125 and 126 GeV, initially
reported about one year ago by the ATLAS and CMS
Collaborations [1,2], has been confirmed with a very high
confidence level by more recent analyses, thus providing
more stringent arguments in favor of the validity of the
electroweak symmetry breaking mechanism. It is inter-
esting to observe that all the analyses performed so far
are in good agreement with the hypothesis that the new
particle is the Higgs boson predicted by the standard
model (SM). Indeed, rates and distributions are compat-
ible with the assumption that the new particle is a scalar
that couples to other SM particles with a strength pro-
portional to their mass [3–5]. Accurate predictions are
necessary and will play a crucial role for the complete
determination of the nature of the Higgs boson [6], in
particular, to shed light on the structure of its couplings
to the other particles.

The production rate for a Higgs boson associated with a
top quark pair (t�tH) is particularly interesting in this con-
text, since it is directly proportional to the SM Yukawa
coupling of the Higgs boson to the top quark. The study of
differential observables and distributions will bring infor-
mation on the coupling structure and on the parity of the
Higgs particle [7,8].

The difficulties related to the analysis of the t�tH chan-
nel are well known. The combined production of three
heavy particles requires a large center-of-mass energy
for the initial partons, which is strongly suppressed by
parton-distribution functions. Furthermore, additional dif-
ficulties are represented by the presence of various chal-
lenging backgrounds and by the complexity of the final

state, which make its kinematic reconstruction far from
straightforward [9].
At the parton level, the t�tH production at next-to-leading

order (NLO) in QCD has been known for some time
[10–14]. More recently, this process has been employed
in a number of studies, motivated by the new analyses
performed at the LHC [7–9,15].
In this Letter, we present the complete NLO QCD

corrections to the process pp ! t�tH þ 1 jet (t�tHj) at the
LHC. Examples of contributing one-loop diagrams are
depicted in Fig. 1. We illustrate the outcome of our calcu-
lation by showing the total cross section, and a selection of
differential distributions.
The goal of the considered calculation is twofold. On

the one hand, it is important for the phenomenological
analyses at the LHC, in particular for the high-pT region,
where the presence of the additional jet can be sensibly
relevant. On the other hand, t�tHj constitutes the first
application of a novel reduction algorithm for the evalu-
ation of one-loop amplitudes, which strengthens the per-
formances of the integrand decomposition [16], in
particular, in the presence of massive particles.

Computational setup.—In perturbation theory, computa-
tions at the NLO accuracy require, aside from the evalu-
ation of leading-order (LO) contributions, the calculation

FIG. 1. Sample of one-loop diagrams contributing to the NLO
corrections to gg ! t�tHg and q �q ! t�tHg.
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of both virtual and real-emission corrections. The Born
and the real-emission matrix elements are computed
using SHERPA [17] and the library AMEGIC [18], which
implements the Catani-Seymour dipole formalism [19].
SHERPA also performs the integration over the phase space

and the analysis. The virtual corrections are generated with
the GOSAM package [20], which combines automated
diagram generation and algebraic manipulation [21–25]
with d-dimensional integrand-level reduction techniques
[26–32]. The master integrals (MIs) are computed using
ONELOOP [33]. The code generated by GOSAM is linked to

SHERPA by means of the Binoth Les Houches Accord [34]

interface, which uses a system of order and contract files
and allows for a direct communication between the two
codes at a running time. The same setup has been recently
employed for the computation of NLO QCD corrections
to pp ! Hjj [35] and pp ! Hjjj [36] (for the latter,
in combination with MADDIPOLE-MADEVENT [37–39])
and also for the analysis of the t�t forward-backward
asymmetry [40].

For t�tHj production, the basic partonic processes iden-
tified by the SHERPA-GOSAM contract file are

q �q ! t�tHg; gg ! t�tHg; (1)

while the remaining subprocesses can be obtained by
proper crossings. The ultraviolet, the infrared, and the
collinear singularities are regularized using dimensional
reduction. The renormalization conditions are fixed along
the lines of [11,13], where the top mass is renormalized on

shell, while the strong coupling is renormalized in the MS
scheme, decoupling the top quark from the running. In the
case of LO (NLO) contributions, we describe the running
of the strong coupling constant with one-loop (two-loop)
accuracy. The wave functions of the gluon and of the
quarks are renormalized on-shell; i.e., the corresponding
renormalization constants cancel the external self-energy
corrections exactly.

The virtual amplitudes of t�tHj have been decomposed in
terms of MIs using, for the first time, the integrand reduc-
tion via Laurent expansion [16], implemented in the C++

library NINJA. This new algorithm exploits the complete
knowledge of the analytic expression of the integrand and
of the residues at the multiple cut to ameliorate the deter-
mination of the coefficients of the MIs with respect to the
canonical integrand reduction [26]. Elaborating on the
techniques introduced in [41–43], the series expansion
combined with the integrand decomposition lowers the
computational load and improves the accuracy of the
results. Within this new algorithm, the sampling of
the numerators and the subtractions of the higher-point
residues, characterizing the triangular system-solving
approach of the original integrand-reduction procedure,
are avoided. Instead, the series expansion allows for a
diagonal system-solving strategy, where the polynomial
subtractions of the residues, when needed, are replaced
by universal correction terms which have to be added to

the coefficients of the Laurent series. These universal
corrections, required only for the determination of the
coefficients of two-point and one-point MIs, are obtained,
once and for all, from the expansions of the generic poly-
nomial forms of the residues at the triple and double cuts.
The NINJA library, which has been interfaced to GOSAM,

implements the integrand reduction via the Laurent expan-
sion using a semianalytic algorithm. The coefficients of the
Laurent expansion of a generic integrand are efficiently
computed by performing a polynomial division between
the numerator and the set of uncut denominators [16].
The calculation of the NLO virtual corrections per-

formed with NINJA has been checked using the independent
reduction algorithm implemented in the library SAMURAI

[31]. We verified the agreement of the virtual corrections
obtained with the two reduction procedures in ten thousand
phase-space points. The values of the double and the single
poles, for each individual subprocess, conform to the
universal singular behavior of dimensionally regulated
one-loop amplitudes [44]. Our results fulfill gauge invari-
ance, verified through the vanishing of the amplitudes
when substituting the polarization vector of one or more
gluons with the corresponding momentum.
The NINJA reduction algorithm proved to be numerically

more efficient and stable. In fact, for the highly nontrivial
process under consideration, only a small set of phase-
space points, of the order of few per mill, were detected
as unstable. All these points have been recovered using the
tensorial reduction provided by GOLEM95 [45,46], thus
avoiding the necessity of higher precision routines, which
are extremely time consuming.
The time required for the computation of the full color-

and helicity-summed amplitudes in one phase-space point
is about 2.5 sec. The numerical values of the one-loop
amplitudes for the two partonic processes listed in Eq. (1)
in a nonexceptional phase-space point are collected in the
Appendix.
In view of the later comparison between the processes

pp ! t�tH and pp ! t�tHj at NLO QCD accuracy, we also
used the framework obtained combining GOSAM-NINJA
with SHERPA to compute the cross section for t�tH produc-
tion. We found excellent agreement with the results pre-
sented in Refs. [7,47].

Numerical results.—In the following, we present results
for the integrated cross section for a center-of-mass
energy of 8 TeV. The mass of the Higgs boson is set to
mH ¼ 126 GeV and the top quark mass is set to mt ¼
172:5 GeV. The parameters of the electroweak sector are

TABLE I. Total cross section for t�tHj for different choices of
the central scale at LO and NLO.

Central Scale �LO (fb) �NLO (fb)

2�GAT 80:03þ35:64
�23:02 100:6þ0:00

�9:43

HT 88:93þ41:41
�26:13 102:3þ0:00

�15:82
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fixed by setting MW ¼ 80:419 GeV, MZ ¼ 91:1876 GeV,
and ��1

EW ¼ 132:506 98.
To cluster the jets we use the anti-kt algorithm imple-

mented in FASTJET [48–50] with radius R ¼ 0:5, a
minimum transverse momentum of pT;jet > 15 GeV and

pseudorapidity j�j< 4:0. The LO cross sections are
computed with the LO parton-distribution functions
cteq6L1 [51], whereas at NLO we use CT10 [52].

In order to study the scale dependence of the total cross
section, we employ two different choices of the renormal-
ization and factorization scales �R ¼ �F ¼ �0, namely,
�0 ¼ HT and �0 ¼ 2�GAT with

HT ¼ X

final
states f

jpT;fj; (2)

GAT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mT;HmT;tmT;�t

3
p þ X

jets j

jpT;jj: (3)

Within this setup, for the two scale choices, we obtain
the total LO and NLO cross sections reported in Table I.
The scale dependence of the total cross section, depicted

in Fig. 2, is strongly reduced by the inclusion of the NLO
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FIG. 2 (color online). Scale dependence of the total cross
section at LO and NLO.

FIG. 3 (color online). Invariant mass distributions of the t�t
pairs for t�tH and t�tHj at NLO relative to the t�tHj at LO for
� ¼ 2�GAT .

FIG. 4 (color online). Transverse momentum distribution of
the Higgs boson at LO and NLO for � ¼ HT .

FIG. 5 (color online). Pseudorapidity � of the Higgs boson at
LO and NLO accuracy for � ¼ HT .
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contributions. It is worthwhile to notice that both choices
for the central value of the scale provide an adequate
description, being close to the physical scale of the process.

In Fig. 3, we compare the distributions for the invariant
mass of the top quark pair in pp ! t�tHj at LO and NLO
with the NLO curve for pp ! t�tH. For t�tHj, going from
LO to NLO accuracy, we observe an increase in the dis-
tribution by 20%–35% over the full kinematical range. On
the other hand, when comparing the NLO t�tH prediction
with the NLO t�tHj curve, the cross section decreases due
to the presence of the additional jet which takes away
energy from the t�t system. This is particularly evident
near the t�t production threshold, while for high values of
the t�t invariant mass the two NLO curves get closer. The
scale for this comparison is set to � ¼ 2�GAT .

In Fig. 4 and 5, we display the distributions of the
transverse momentum pT and the pseudorapidity � of
the Higgs boson, respectively. Each plot contains the dis-
tributions at LO and NLO accuracy, for a value of the scale
set to � ¼ HT . The NLO corrections are particularly
important for high values of the pT , which are the kine-
matical regions involved in the boosted analyses [15,53].

These distributions show the potential of the framework
obtained combining GOSAM-NINJAwith SHERPA, which can
be successfully used to compute NLO predictions for
multileg processes involving massive particles. Moreover,
they shed some light on the impact of further jet activity in
pp ! t�tH, one of the most important processes for the
direct determination of the coupling of the Higgs boson to
fermions. The NLO QCD corrections reduce the scale
uncertainty and their numerical impact can be sizable.
Therefore they could be helpful for an accurate simulation
of the signal in the experimental searches looking for
Higgs production in association with a top quark pair at
the LHC.
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Appendix: Benchmark phase-space point.—In this ap-
pendix we collect numerical results for the renormalized
virtual contributions to the processes, Eq. (1), in corre-
spondence to the phase-space point in Table II. The results
are collected in Table III and are computed using dimen-
sional reduction. The coefficients ai are defined as follows:

a�2

�2
þ a�1

�
þ a0 � 2RefMtree-level�Mone-loopg

ð�s=2�ÞjMtree-levelj2 :

The reconstruction of the renormalized pole can be
checked against the value of a�1 and a�2 obtained by the
universal singular behavior of the dimensionally regular-
ized one-loop amplitudes [44], while the precision of the
finite parts is estimated by reevaluating the amplitudes for
a set of momenta rotated by an arbitrary angle about the
axis of collision.
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