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We demonstrate a zero-dead-time operation of atomic clocks. This clock reduces sensitivity to local

oscillator noise, integrating as nearly 1=� whereas a clock with dead time integrates as 1=�1=2 under

identical conditions. We contend that a similar scheme may be applied to improve the stability of optical

clocks.
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In the 1950s atomic clocks revolutionized precision time
keeping by locking a microwave source to an atomic
resonance. Constant refinements improved the early frac-
tional frequency stabilities near 10�10 [1] to the current
levels below 5� 10�16 [2]. In recent years, clocks based
on optical transitions have progressed with a rapid pace,
surpassing conventional microwave atomic clocks with
frequency stabilities better than 10�17 [3–5]. Optical
clocks are now beginning to perform tests of relativity
[6] and constrain the possible time dependence of the
fine structure constant [7].

Although these systems demonstrate unparalleled per-
formance, they fail to realize their full potential. In the
most stable clocks, the atomic linewidth is beyond the
reach of current probe laser stability [8,9]. In general,
this limits performance by forcing short interrogation
times although the coherence of the atom far outlives
that of the laser [10,11]. In this Letter we demonstrate a
zero-dead-time technique in a microwave clock that can
reduce these performance limitations as proposed in
Ref. [12].

Atomic frequency standards often incorporate dead
time in the interrogation of the atomic resonance. This
interruption typically consists of state detection and
initialization processes. Spurious drifts in the local oscil-
lator (LO) frequency during the dead time are neither
measured nor compensated. These drifts accumulate as
an unknown phase or timing error. In an equivalent
picture, the dead time effectively modulates the fre-
quency discriminator sensitivity or feedback gain. This
aliases high frequency LO fluctuations into the long term
stability of the standard [12]. The magnitude of this, the
Dick effect [13,14], depends strongly on the LO noise
spectrum and the specifics of the clock interrogation. To
assuage the Dick effect, microwave standards rely on
LOs with outstanding short term stability and negligible
contributions to the clock noise [15]. On the contrary,
sufficient probe laser LOs for optical clocks are still
pending. Alternatively, our approach addresses this in-
adequacy by interleaving two atomic clocks to con-
stantly regulate the LO and eliminate the Dick effect
completely.

To illustrate this technique we begin by calculating
the cumulative phase error of an atomic clock based on
a two-pulse Ramsey interrogation. In these clocks, a
unit of time is defined by a prescribed number of cycles
of a LO. For example, in a cesium fountain clock,
a microwave oscillator is servo tuned to the jF ¼ 3;
mF ¼ 0i ! jF ¼ 4; mF ¼ 0i ground-state hyperfine
resonance at !0 ¼ 2�� 9:2 GHz. With the microwave
field on resonance, the observable following a two-pulse
�=2-�=2 Ramsey sequence is the atomic transition
probability given by P ¼ 1

2 ½1þ cosð��Þ� where the

quantity of interest

�� ¼ �LOðtþ TÞ ��LOðtÞ �!0T

¼
Z tþT

t
½!ðt0Þ �!0�dt0: (1)

Here !0 is the atomic resonance frequency, !ðt0Þ is the
frequency of the LO at time t0, and T is the interrogation
time.
In principle, the clock measurement detects the devia-

tion of the LO phase with respect to the phase of the atom
[16]. We therefore define

��LO
n � �LO

n �!0tn; (2)

where �LO
n is the LO phase at the nth �=2 pulse and tn is

the associated time stamp. Using Eq. (2) with Eq. (1)

�� ¼ ��LO
n � ��LO

n�1; (3)

where ��LO
n is associated with the second �=2 pulse in a

given clock measurement pulse pair.
In an open loop mode, the cumulative LO phase as

measured by a single clock (SC) is given by

��SC ¼ XN
n¼1

ð��LO
2n � ��LO

2n�1Þ þ
XN
i¼1

��m
i : (4)

In this equation ��m
i is the phase uncertainty associated

with the quantum state measurement in the ith clock cycle,
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and N is the total number of cycles in the data. As
expected, the performance of the clock is ultimately lim-
ited by the measurement noise. However, the single clock
also ignores phase error during the dead time (DT) which
accumulates as

��DT ¼ XN
n¼1

ð��LO
2nþ1 � ��LO

2n Þ; (5)

leading to the Dick effect. As illustrated in Fig. 1 our zero-
dead-time (ZDT) approach uses a second clock to measure
��DT.

We now calculate the cumulative phase error of the ZDT
configuration. For this analysis we consider the specific
case where tnþ1 � tn ¼ T for all n and thus the cycle time
of each clock is Tc ¼ 2T. The interleaved measurements
are linked in time by synchronizing the first (second) �=2
pulse of one clock with the second (first) �=2 pulse of the
other clock. When optimally implemented [17], the sum of
the consecutive measurements cancels the phase noise in
the shared pulses, such that only the phase from the first
and last �=2 pulse in the data set contribute. Our experi-
ment approximates this technique by using a square pulse
shape. For two clocks, SC1 and SC2 with NSC1

¼ NSC2
¼

N, the cumulative phase is given by

��ZDT ¼ ��SC1
þ ��SC2

¼ XN
n¼1

ð��LO
2n � ��LO

2n�1 þ ��m1
n Þ

þ XN
n¼1

ð��LO
2nþ1 � ��LO

2n þ ��m2
n Þ

¼ ��LO
2Nþ1 � ��LO

1 þ XN
n¼1

ð��m1
n þ ��m2

n Þ: (6)

Here, ��mi
n is the measurement error for clock i. This

configuration concatenates 2N clock measurements,
effecting a 2NT Ramsey interrogation time of the LO
provided the measurement noise is negligible.

It is also illuminating to calculate the frequency uncer-
tainty of the two schemes. In the case of stationary, white
noise on the LO, the two-sample Allan deviation for the
clock frequency measurements can be written as

�yð�Þ ¼
8><
>:

ðN�2
��

þN�2
mÞ1=2

!0

1
�ðT=TcÞ single clock

ð�2
��

þ2N�2
mÞ1=2

!0

1
� ZDT:

(7)

In these equations, ��� � ffiffiffi
2

p hð��LOÞ2i1=2 and �m �
hð��mÞ2i1=2 are the rms noises in the clock output and

measurement respectively, and the factor of
ffiffiffi
2

p
follows

from the assumed independence of the two phase measure-
ments in Eq. (4). For a single clock, adjacent measure-
ments of �� are uncorrelated, so errors accumulate with a

random walk, �1=2, time dependence as do the quantum
state measurement uncertainties. However, ZDT measure-
ments are perfectly correlated such that the associated
phase error is stationary. For clarity, we consider the case
where the LO noise is characterized by white phase noise
and the measurements by quantum projection noise. In
systems of interest here, ��� � �m and we subsequently

neglect measurement noise in our calculation. Using
N ¼ bð�=TcÞc we find

�yð�Þ ¼
8<
:

���

!0T

ffiffiffiffi
Tc

�

q
single clock

���

!0

1
� ZDT:

(8)

The single clock averages as 1=�1=2 while ZDTaverages as
1=� for � < Tc=2ð���=�mÞ2. At longer times ZDT is

limited by the measurement noise and averages as

�yð�Þ ¼ �m=!0ð2=Tc�Þ1=2.
We demonstrate this concept with two microwave foun-

tain clocks. A precision LO interrogates both clocks as
shown in the system diagram of Fig. 2. The phase errors
measured with each clock are combined and continuously
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FIG. 1. Ramsey �=2 pulse timing diagram of a ZDT imple-
mentation of two clocks (SC1 and SC2). In each clock cycle the
first (second) �=2 pulse of one clock coincides with the second
(first) �=2 pulse of the other clock. Typical clock processes of
detection and state preparation occur during the times between
LO interrogation.
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FIG. 2 (color online). High level schematic of our ZDT dem-
onstration. Two identical atomic clocks, SC1 and SC2, alter-
nately monitor the LO in the presence of an added phase noise.
The combined outputs continuously track the resulting phase
evolution.
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monitor the phase evolution of the LO. To test this idea, we
add a known noise source to the LO and compare the
response of the single clock and ZDT approach.

Each individual clock sequence proceeds as follows. A
2:3 �K, 3 mm 1=e2 radius cloud of� 107 cesium atoms in
the 62S1=2 jF ¼ 3; mF ¼ 0i hyperfine ground state

launches upward at 1:13 m=s using a moving-molasses
technique. The cloud follows a 6.5 cm vertical fountain
trajectory during which a microwave �=2-�=2 Ramsey
sequence tuned to the jF¼3;mF¼0i! jF¼4;mF¼0i
clock transition is applied to the atoms with an interrog-
ation time of T ¼ 215 ms. After the final pulse, the atoms
fall into the detection region just below their point of
origin. We determine the clock transition probability using
simultaneous fluorescence detection of both states [18]. We
choose the dead-time interval to match the interrogation
time giving a repetition rate of frep ¼ 2:3 Hz for each

clock.
The clock noise floor is demonstrated by the Ramsey

fringe shown in Fig. 3. Noise in the LO distribution elec-
tronics causes phase noise in the fringe at the level of�m ¼
33 mrad per shot, giving a short-term fractional frequency

uncertainty of 1:8� 10�12=�1=2. The detection noise of
each clock is negligible in this experiment. Using this
as a baseline, we test our system by adding ��� ¼
300 mrad rms phase noise to the precision LO. To track
this noise we monitor the zero crossings of a 1 kHz beat
note between the noisy and unperturbed LO [19]. Because
of the magnitude of the noise we account for the fringe
contrast and slope nonlinearity when extracting phase
values.

Figure 4 shows an example of the cumulative phase
error of the noisy LO measured by our experiment.
The single clock measures uncorrelated snapshots of the
LO phase noise resulting in a random walk of the
cumulative phase conforming to the expected value of

�ðtÞ ¼ ���

ffiffiffiffiffiffiffiffiffiffi
frept

p ¼ 0:45
ffiffiffiffiffiffiffi
t=s

p
rad rms. For comparison,

over the entire data set the cumulative ZDT phase is limited
to 440 mrad rms in contrast to the single clock which at
times drifts by more than 10 radians. The residual drift of
the ZDT output is driven primarily by uncorrelated noise
between the two clocks due to the aforementioned LO
distribution noise.
In Fig. 5 we compare the Allan deviation of both the

single and ZDT clocks. The single clock reveals a fre-
quency uncertainty slope of 1:3� 10�11=�0:57, character-
istic of white frequency noise. In contrast, the ZDT clock
demonstrates a much improved slope of 6:2� 10�12=�0:91,
indicative of the applied white phase noise. For times
larger than 50 seconds, Eq. (8) no longer holds as uncorre-

lated noise limits the slope to 1:2� 10�12=�1=2.
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FIG. 4. Comparison of ZDT and conventional clock tech-
niques. The cumulative beat-note phase is measured by compar-
ing the noisy LO to the precision LO. The cumulative ZDT phase
agrees with the cumulative beat-note phase and is bound at 440
mrad rms, whereas the cumulative single clock phase occasion-
ally drifts by more than 10 rad.
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FIG. 5. Frequency uncertainty of conventional and ZDT
clocks. In the first 10 seconds ZDT demonstrates 6:2�
10�12=�0:91, characteristic of white phase noise while the single
clock demonstrates 1:3� 10�11=�0:57 due to the Dick effect.
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FIG. 3. Typical Ramsey clock fringe indicating the system
noise floor. With T ¼ 215 ms, the phase noise corresponds to
a frequency stability of 1:8� 10�12=�1=2, limited by noise in the
LO distribution electronics.

PRL 111, 170802 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

25 OCTOBER 2013

170802-3



In conclusion, we have demonstrated a ZDToperation of
microwave atomic clocks which eliminates the Dick effect.
We apply this method to a system with a noisy oscillator

and show 1=� averaging in contrast to the 1=�1=2 averaging
of conventional clocks with dead time. This technique can
significantly ease the requirements on LO short term fre-
quency stability in microwave and optical atomic clocks.
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