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We present the first experimental microwave realization of the one-dimensional Dirac oscillator, a

paradigm in exactly solvable relativistic systems. The experiment relies on a relation of the Dirac

oscillator to a corresponding tight-binding system. This tight-binding system is implemented as a

microwave system by a chain of coupled dielectric disks, where the coupling is evanescent and can be

adjusted appropriately. The resonances of the finite microwave system yield the spectrum of the one-

dimensional Dirac oscillator with and without a mass term. The flexibility of the experimental setup

allows the implementation of other one-dimensional Dirac-type equations.

DOI: 10.1103/PhysRevLett.111.170405 PACS numbers: 03.65.Pm, 07.57.Pt, 41.20.�q, 73.22.Pr

The relativistic version of the harmonic oscillator has
been touched upon occasionally [1,2] but became a widely
used model for relativistic equations with the appearance
of the seminal paper [3]. Originally, it was known as the
Dirac oscillator (DO) [4,5]. Indeed, since then, the number
of papers using this model has increased rapidly, mainly in
mathematical physics [6–19], but also in nuclear physics
[20–22], subnuclear physics [23,24], and quantum optics
[25–28]. In mathematical physics, it has become the para-
digm for the construction of covariant quantum models
with some well determined nonrelativistic limit but has
also attracted much attention in the environment of exactly
solvable models and symmetries; it is amusing to mention
that even the Higgs symmetry has been considered in this
context [29].

While this model is a paradigm of mathematical physics,
it does not describe a known physical system, as is the case
for the Dirac equation for the hydrogen atom. Thus, an
experimental realization by other means is highly desir-
able. There are two proposals to realize analogue experi-
ments: one in the realm of quantum optics [26–28] and the
other one using a classical microwave setup [30]. In this
Letter, we shall present a microwave realization for the 1D
DO. Beyond its intrinsic interest, the experiment is also a
starting point for further experimental exploration of
Dirac-like equations.

Wewillmainly follow the proposition ofRef. [30] but use
a slightly different mechanism to appropriately take into
account the finiteness of the experimental system. The
experimental idea is based on a mapping of the DO to a
tight-binding model with dimers. In this model, it is impor-
tant that only nearest neighbor interactions are present. It
consists of a chain of coupled disks with a high index of
refraction sandwiched between two metallic plates. The

coupling constants between the disks have to be adjusted
properly to obtain a spectrumwhich is equivalent to the DO
spectrum. This setup has been used to investigate the Dirac
points [31], disorder effects [32], and topological transitions
in graphene [33]. We start with a short introduction to the
DO and its relation to a tight-binding Hamiltonian with
nearest neighbor coupling only. Thereafter, we introduce
the experimental setup and present the experimental results.
Dirac oscillator.—The system that we now call the DO

was proposed more than 20 years ago [3,34–37], and its
properties and possible applications have been studied
extensively. The original formulation was presented in
Hamiltonian form. Covariance was easily achieved, and
the physicality of such a system could be attained by means
of a Pauli coupling [3]. In the present Letter, we will use
the 1þ 1-dimensional version of the Dirac oscillator [4],
which can be treated analogously and yields a two-
component spinless structure.
The system in question can be conceived in its simplest

form by writing the corresponding Hamiltonian as a func-
tion of the spectrum generating algebra. Let a, ay be the
ladder operators of a nonrelativistic harmonic oscillator
and �� ¼ �x � i�y the creation and annihilation opera-

tors of spin 1=2 in terms of Pauli matrices. The 1þ
1-dimensional DO Hamiltonian is

H ¼ �þaþ ��ay þ��z; (1)

where the spectrum is given by

��;n ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ�2

q
; (2)

where the sign denotes particles and antiparticles. The
dimensionless commutator ½a; ay� ¼ 1 ensures that for a
particle of mass m and an oscillator of frequency !, we
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have � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc2=@!

p
. Thus, in the appropriate units, �

gives the mass of the particle directly, and the time variable

scales as t �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!mc2=@

p
t. In a certain limit, the DO can

also be reduced to the Weyl equation with a linear poten-
tial; thus, one may call this system even a Weyl oscillator.
Takingm!0 and leavingm!¼ const�0 leads to� ! 0,
and the following massless Hamiltonian

H ¼ �þaþ ��ay; (3)

with the simplified spectrum

�n ¼ � ffiffiffi
n

p
: (4)

Note here that for n ¼ 0, there is a double degeneracy,
where one of the states is given by j�; 0i. Both
Hamiltonians (2) and (3) can be described within a tight-
binding model with dimers.

Description as a tight-binding model.—The eigenvalue
problem resulting from the Hamiltonian (1) can be written
as two coupled tight-binding equations of the formffiffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

c�
nþ1 þ�cþ

n ¼ �nc
þ
n ; (5)

ffiffiffi
n

p
cþ

n�1 ��c�
n ¼ �nc

�
n ; (6)

where c�
n is the atomic wave function of the nth dimer and

the superscripts þ and � indicate sites of types A and B
(see also Fig. 1). In our previous work [30], we have
established that this model can be emulated in a one-
dimensional chain with nearest neighbor interactions
where the spin (� superscripts in the equations above)
can be represented by A and B sites in a linear chain. By
defining the new operators

b ¼ �ð1þ aÞ; by ¼ �ð1þ ayÞ; (7)

the Hamiltonian for a tight-binding chain of two species
can be written as

Hchain ¼ �þbþ ��by þ��z; (8)

and� is now the energy difference between the resonances
sitting upon A and B sites, giving rise to a spectral gap.

The constant � is nothing else than the coupling between
two sites, and the spectrum of the system can be extracted
by virtue of the algebraic relation ½b; by� ¼ �2. As before,
we have

�n ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2nþ�2

q
: (9)

The map between the DO and the coupled linear chain of
two species is therefore quite natural. Finally, we can see
that the resulting array comprises dimers AB; e.g., site A is
always equally coupled to site B by � independently on n,
whereas the coupling between the dimers �n has to follow
a specific law derived below. The requirements for a real-
ization of b, by, on the other hand, introduce the following
restrictions: For the interdimer coupling, �n ¼ �

ffiffiffi
n

p
.

An appropriate cutoff.—Until now, we assumed a semi-
infinite array which terminates at one end with the value
�0 ¼ 0 (no more dimers to the left). Therefore, couplings
of the form

ffiffiffi
n

p
range from 0 to limn!1�n ¼ 1. However,

experimentally accessible couplings always have an upper
limit �sup determined by the physical situation and such a

restriction introduces a natural cutoff in the array by means
of the relation �sup ¼ �

ffiffiffiffiffiffiffiffi
nsup

p
. Thus, we arrive at a finite

chain with a total number 2nsup of sites.

A previously proposed finite realization [30], although
well conceived for the infinite case, did not take into
account cutoff effects appropriately. Any configurations
of type b ¼ �aþ � for arbitrary � fulfills the algebraic
relations, but to keep edge effects small, � must be smaller
than any other coupling in the system. Choosing � ¼ � is
sufficient for this purpose. The preferred tight-binding
models are such that the successive couplings are increased
until a maximal coupling is reached, which is in contrast
with the previous proposition.
The generation of mass.—Our scheme so far contem-

plates the appearance of a spectral gap corresponding to a
finite mass in the DO to result from an inherent asymmetry
within the dimer; i.e., A andB have different eigenenergies.
This produces the term ��z in the Hamiltonian [Eq. (1)].
However, in practice, an alternate option to generate a gap
occurs due to finite size effects: We choose the smallest
interdimer coupling to be slightly smaller, rather than equal
to the intradimer coupling, i.e., �0 * �min. Numerical
inspection of the tight-binding model shows that, while a
gap opens, the effects on the relative position of the eigen-
values on both sides of the gap have finite size errors
similar to the ones in the gapless case. Note that the gap
depends on the number of sites and vanishes as this number
goes to infinity; therefore, a large array will not describe
a DO with mass, in compliance with the chiral symmetry
of the system [38]. Yet, for finite sizes, we do get the
desired spectrum and we can make appropriate approxi-
mations or numerical calculations in the tight-binding
model to explain this satisfactorily. Nevertheless, we sug-
gest to adapt the gap size to the experimental one rather
than to get it from a tight-binding model, as there will

FIG. 1. A chain of resonators in dimeric configuration, with
atoms of types A and B. The index n stands for the dimer
number, � is the coupling between elements of the same dimer
(intradimer coupling, kept constant throughout the array), and
�n is the coupling between the right end of dimer n and the left
end of dimer nþ 1 (interdimer coupling). Have in mind that here
we present the couplings only, later on � � �n, which means
that in the experiment, the intradimer distance is the largest
distance in the chain.
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always remain discrepancies between the model and the
experiment, which are entirely unrelated to the DO. If we
wish to take advantage of this finite size effect, we should
thus replace Eq. (8) by

�n ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2nþ�2

exp

q
; (10)

where �exp refers to the parameter determined by the

experiment.
Experimental results.—For the experimental realization

of the DO, we use the techniques that have been developed
to investigate the band structure of graphene [31–33]. The
realization of the DO is achieved as tight-binding system
with nearest neighbor coupling and small higher order
ones. A set of identical dielectric cylindrical disks (5 mm
height, 4 mm radius, and a refractive index of about 6) is
placed between two metallic plates (see Fig. 2). Close to
one disk, we placed a kink antenna connected to a vectorial
network analyzer, allowing us to excite both transverse
magnetic and transverse electric (TE) modes. The individ-
ual disks have an isolated TE resonance at 6.65 GHz. We
restrict our investigation to frequencies around this value,
where each disk contributes only one resonance. The elec-
tromagnetic field for this TE mode is mostly confined
within the disks and spreads evanescently outside. A sketch
of the experimental setup is shown in Fig. 2, and a detailed
description is presented in Ref. [32].

In contrast to Refs. [31,32], we adjusted the height
between the two plates to h ¼ 13 mm, to reduce the higher
order neighbor couplings. The coupling parameter �
between two adjacent disks depends on the distance
between centers of the disks d and can be given in terms
of a modified Bessel function jK0j2, as described in
Refs. [31,32]. Thus, by changing the distance between
disks, one changes the interdisk couplings and obtains
the 1D DO.

For the sake of simplicity, let us assume an exponential
law which is a good approximation of the coupling in terms
of the distance in the range of interest. Then, the distances
dn between the dimers in the massless case are given by

dn ¼ � 1

�
ln

�
�n

�K

�
¼ � 1

�
ln

�
�

ffiffiffi
n

p
�K

�
: (11)

The intradimer distance is d, and we chose d1 ¼ d. The
distances between the dimers are decreasing monotoni-
cally; thus, the smallest possible distance dinf determined
by the diameter of the disks dD defines the largest possible
coupling �sup and the largest allowable number of dimers

nsup, giving the largest admissible size of our dimer chain.

The number of energy levels is therefore equal to 2nsup.

The eigenfrequencies for the 1D DO without mass are then
given by

�n ¼ �c � �
ffiffiffi
n

p
; (12)

where �c is the eigenfrequency of a single disk. We used an
intradimer distance d of 13, 14, and 15 mm and chains of
12, 18, 24, and 30 disks. In Fig. 3, we show the reflection
spectra for d ¼ 13 mm and 30 disks for two different
antenna positions. The height of the resonances depends
on the antenna site, as it is proportional to the intensity of
the wave function at the disk. By measuring at different
sites, it is possible to extract all resonance positions. The
vertical lines correspond to the theoretical predictions, and
a good agreement is found. Deviations increase at the
edges of the spectrum, as designed by the choice of the
cutoff.
We now investigate the dependence on the chain length.

The measured eigenfrequencies as a function of the mode
number are shown in Fig. 4. The continuous curve corre-
sponds to the analytical prediction [Eq. (12)]. As the
number of dimers increases, we find that the low levels

FIG. 2 (color online). Disks with a high index of refraction are
placed between two metallic plates as a chain with center to
center distances dn or d. The microwaves are induced by a vector
network analyzer (VNA) via a microwave cable and a kink
antenna.
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FIG. 3 (color online). Reflection spectra of a Dirac oscillator
without mass for a 15 dimer chain with minimal dimer distance
of dmin ¼ 13 mm. The upper spectrum (up-shifted) is measured
at the 15th disk, whereas the lower is measured at the 3rd disk.
The vertical lines indicate the predicted resonance positions from
Eq. (12) with � ¼ 0:023 GHz.
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are best reproduced by the theoretical curve [Eq. (12)], and
the point of departure from theory moves further away
from the center of the spectrum as the number of dimers
increases. For dimer distances of 14 and 15 mm, we got
similar results. Thus, we experimentally measured the
spectrum of the Dirac oscillator without mass in a finite
approximation.

As we only have disks of the same type, meaning having
approximately the same resonance frequency, we cannot
directly generate the 1D DO with mass as originally intro-
duced. But, as mentioned above, for a finite chain, one can
introduce a mass term by setting the intradimer coupling�0
larger than the smallest coupling between the dimers �min.
Thus, we only have to set the intradimer distance d to be
smaller than the maximal interdimer distance d1. We used
a chain of 15 dimers with an initial interdimer distance
d1 ¼ 15 mm and a smallest interdimer distance d14 ¼
dmin � 10:81. As intradimer distances d, we choose 10,
11, and 12 mm. In Fig. 5, we present the reflection spectra
and the theoretical prediction [Eq. (2)] for d ¼ 10 mm. We
observe the expected gap at the center and find a good
agreement for the resonances close to the gap. Again, the
outer resonances show larger deviations. Next, we removed
step by step the last dimer, thus increasing the minimal
interdimer distance dmin starting with dinf .

In Fig. 6, the resonances for different chain lengths are
shown. We observe a good agreement for the upper spec-
trum with Eq. (2). The two bands behave slightly

differently; especially, their width is different, due to the
second nearest neighbor couplings, as was also observed in
square and graphene lattices [39]. Furthermore, the gap is
observed to increase monotonically with dmin.
In conclusion, we have experimentally realized the 1D

DO based on the correspondence of the DO to a tight-
binding model. Within this model, effects of finite size are
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FIG. 4 (color online). Dirac oscillator without mass for an
intradimer distance of 13 mm. The continuous curve corresponds
to the analytical prediction [Eq. (12)]. The symbols correspond
to different numbers of dimers: 6 dimers (circles), 9 dimers
(squares), 12 dimers (diamonds), and 15 dimers (triangles).
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FIG. 5 (color online). Reflection spectrum of a Dirac oscillator
with mass for a 15 dimer chain, where the intradimer distance of
10 mm and the interdimer distance of dmin ¼ 10:81 mm. The
vertical lines indicate the predicted resonance positions from
Eq. (12) with � ¼ 1:066 GHz and � ¼ 0:028 GHz.
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FIG. 6 (color online). Dirac oscillator with mass for a different
number of dimers, where the last dimers are removed. The
intradimer distance is d ¼ 10 mm. Displayed are 6 (dmin �
12:32 mm, circles), 9 (dmin � 11:61 mm, squares), 12 (dmin �
11:15 mm, diamonds), and 15 (dmin � 10:81 mm, triangles).
Additionally, the corresponding theoretical curves resulting
from Eq. (9) are plotted as solid lines.
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small at the center of the spectrum. Furthermore, we have
produced a gap in the spectrum which can be interpreted as
the mass of the fermion. This was done by a distortion that
applies only to finite arrays, as the infinite limit of the
system makes such a gap vanish. We hope for the future to
investigate wave functions and pulse propagation as well.
Both are accessible for the setup if one uses a movable
antenna with an additionally fixed antenna and measures
the transmission [33,39]. Additionally, we would like to
realize a 2D DO, as mentioned in Ref. [30]. The model
assumes a logarithmically deformed hexagonal lattice with
only nearest neighbor couplings. To respect this coupling
condition, a realization of the 2D DO is not possible
with our distance-coupling relation. However, microwave
graphs seems to be a promising candidate [40,41].
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