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We study the effects of the internal coherent (Rabi) coupling in vortex lattices in two-component BECs

under rotation. We find how the vortex lattices without the Rabi coupling known before are connected to

the Abrikosov lattice of integer vortices with increasing the Rabi coupling. We find that (1) for small Rabi

couplings, fractional vortices in a triangular or square lattice for small or large intercomponent coupling

constitute hexamers or tetramers, namely multidimer bound states made of six or four vortices,

respectively, (2) these bound states are broken into a set of dimers at intermediate Rabi couplings, and

(3) vortices change their partners in various ways depending on the intercomponent coupling, to organize

themselves for constituting the Abrikosov lattice of integer vortices at strong Rabi couplings.
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Multicomponent condensations are one of growing
topics in condensed matter physics such as exotic super-
conductors, superfluid 3He, multicomponent or spinor
Bose-Einstein condensates (BECs) of ultracold atomic
gases, exciton-polariton condensates, nonlinear optics,
and nonlinear sciences. They also appear in high energy
physics and astrophysics such as hadronic matter com-
posed of neutron and proton Cooper pairs relevant for cores
of neutron stars, and quark matter composed of diquark
condensates consisting of quark Cooper pairs which might
be present at higher density. One of the new common
features of these systems is the existence of exotic vortices
created by rotating superfluids or BECs or by applying a
magnetic field on superconductors. There exist different
vortices winding around different condensates in general.
Their quantized circulations for superfluids or BECs and
fluxes for superconductors are not integer valued anymore
but are rational or fractional in general, as found in various
systems: superfluid 3He [1,2], p-wave superconductors
[1,3–5], multigap superconductors [6,7], spinor BECs
[8,9], multicomponent BECs [10–19], exciton-polariton
condensates [20,21], nonlinear optics [22], and color
superconductors as quark matter [23].

Among various condensed matter systems admitting
vortices, BECs of ultracold atomic gases provide a par-
ticularly ideal system for examining properties of vortices
both theoretically and experimentally [24]. Theoretically,
BECs can be quantitatively well described in the mean-
field theory, i.e., the Gross-Pitaevskii equation. On the
other hand, BECs are quite flexible and controllable
systems experimentally, because the atomic interaction
is tunable through a Feshbach resonance [25] and the
condensates can be visualized directly by optical tech-
niques. Two-component BECs have been realized by

using the mixture of atoms with two hyperfine states
of 87Rb [26] or the mixture of two different species of
atoms [27–29].
One of fascinating features of fractional vortices is

the possibility of various structures of vortex lattices, as
found in a vortex phase diagram in two-component BECs
[11–15]. When the intercomponent coupling is increased,
one obtains from an Abrikosov’s triangular lattice of
fractional vortices to a square lattice of fractional vortices
[11–13], and a vortex sheet [17]. One may expect a similar
phase diagram in exotic superconductors if the rotation
speed is replaced with an applied magnetic field.
However, for multigap superconductors, the existence of
a Josephson coupling between different condensates is
inevitable. While this term provides a gap to the Leggett
mode corresponding to the phase difference between two
condensates, it has been predicted in Refs. [6,7] that it also
binds fractional vortices winding around two different
components by a sine-Gordon kink [30,31], resulting in a
two-vortex molecule, a dimer. However, such a molecule
structure has not yet been observed in exotic superconduc-
tors except for indirect evidences [32]. In two-component
BECs of atoms with two hyperfine states such as 87Rb [26],
two condensates can be coherently coupled by introducing
a Rabi oscillation, which gives the same interaction as the
Josephson coupling in superconductors. In fact, with the
Rabi couplings, vortices winding around two (or more)
different condensates are found to constitute a dimer
[13,16] (or a trimer [19]), connected by one (or more)
sine-Gordon kink(s) [10]. Similar objects were discussed
in spinor BECs [33]. The molecule structures are more
accessible in BECs than superconductors because of
stronger repulsion between two kinds of vortices and tun-
able atomic interactions in experiments in BECs. However,
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effects on this term were not studied in the vortex phase
diagram of two-component BECs.

The purpose of this Letter is to systematically study
effects of the Rabi coupling in vortex lattices in two-
component BECs under rotation. In the limit of a strong
Rabi coupling, each vortex molecule is tightly bound to
become an integer vortex, where one can expect the usual
Abrikosov lattice of integer vortices. The effects of the
coherent coupling were simulated in [34] for an atomic-
molecular BEC mixture. However, the richer vortex lattice
structure in atomic two-component BECs gives rise to a
wider variety of configurations, as shown below. A quite
nontrivial question is how the vortex lattices without the
Rabi coupling known before are deformed into the integer
Abrikosov lattice when the Rabi coupling is gradually
increased. We find various new structures of vortex lattices
and new phenomena of vortices, i.e., a bound state of
multiple dimers bound by an intermolecular force and
exchanging partners among multiple multidimer bound
states analogous to chemical reactions. For small Rabi
couplings, fractional vortices in triangular or square lattice
constitute vortex hexamers or tetramers, respectively. With
increasing the Rabi coupling, they are broken into a set of
dimers. Then, they exchange their partners to organize
themselves to prepare for becoming the Abrikosov lattice
of integer vortices.

The energy functional of the Gross-Pitaevskii equations
for the rotating BECs subject to a trapping harmonic
potential can be written as:
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where the derivatives include (r, �) coordinates. We mea-

sure distances and energies in terms of bho ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
@=m!

p
and

@!, respectively, wherem is the mass of the atoms and! is
the frequency of the trapping harmonic potential. We con-
sider g1 ¼ g2 ¼ g.

The phase diagram of the vortex lattice forming in the
condensate was studied in [11,12] and a rich variety of
lattices was found. The structure of the two component
lattice depends on the sign and on the magnitude of g12, the
coupling constant of the intercomponent interactions.

When g12=g ¼ � < 0, the vortices of different compo-
nents are attracted and are combined into integer vortices.
Because of repulsion among them, they organize in a trian-
gular lattice. If � > 0, depending on the value of � and �,
vortices in each component organize in the triangular lat-
tice, the square lattice, or the vortex sheet. When � ¼ 0 the
vortices of each component are organized in an Abrikosov
lattice, but the vortices of different components are
decoupled. If � is increased, the intercomponent interaction

results in a repulsive force between the vortices of different
components [14,18] and the two-component lattice has a
hexagonal structure.When� is increased further the unitary
cell of the single component lattice is changed from a
triangle to a square. The value of � for which the lattice
reorganizes depends on rotation speed. If � > 1, phase
separation occurs and vortex sheets appear [17].
We now want to systematically study the effect of an

internal coherent coupling on the vortex lattice. When the
two different components are atoms with different hyper-
fine spin states, the coherent coupling can be achieved by
Rabi oscillations. This results in the formation of a two-
vortex molecule, namely a dimer.
The potential induced by Rabi oscillations has the form

VR ¼ �
Z

d3r!Rð��
1�2 þ��

2�1Þ: (2)

This interaction couples the atoms of the two components
via the relative phase of the order parameters. We expect
the interplay between the Rabi interaction and the atom-
atom interaction triggered by g12 to be fundamental for the
vortex lattice structure. Then we consider the ratio!R=� as
the relevant quantity.
We first reproduced the results of [12] by numerically

minimizing the free energy (1). They are reported on the
horizontal axis of Fig. 1. We minimize the free energy (1)
by the nonlinear conjugate gradient method (the imaginary
time propagation) in the FreeFemþþ package. We cal-
culate the ground state of the system with !R > 0 by
minimizing the energy functional (1) with (2) added. We
use the converged lattice solution obtained with!R ¼ 0 as
the starting-point configuration and then we increase the
Rabi frequency by steps �!R ¼ �=20. We then take the
results of the converged calculation obtained for some
value of !R as the initial configuration for the next step.
By using this ‘‘adiabatic’’ evolution method we are con-
fident that we always obtain the true ground state for the

FIG. 1. The vortex lattice phase diagram. a0, b0, c0, d0
indicate the lattices found in [12]. a0 corresponds to the trian-
gular lattice, b0 to the square lattice, and d0 to the vortex sheet,
while c0 represents the configuration staying at the boundary
between lattice and vortex sheet regions. The others are the
different configurations explained in the text. The labels refer to
the pictures of Fig. 2.
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vortex lattice. We cross-checked our results by starting
from the converged solution with � ¼ 0 and moving in
the phase diagram along horizontal lines, with steps of
�� ¼ 0:1, keeping the ratio !R=� fixed. We report the
results in the Supplemental Material [35]. In all the
numerical simulations we take g ¼ 1, � ¼ 0:98, and
�1 ¼ �2 ¼ 4:5. The number of atoms is N1 ¼ N2 ¼ N �
103, while the value of the healing length �� 0:3bho. The
ground state configurations obtained are schematically
reported in Fig. 1. For simplicity, we reported labels for
the various configurations which we explain below.

We find that for !R=� & 1=10 multidimer bound states
appear. When � takes values corresponding to triangular
lattices 0< � & 0:3, the system exhibits vortex hexamers
connected by domain walls, as shown in Fig. 2(a); if � is

within the square lattice range 0:3 & � & 1, each bound
state is composed of four vortices making up tetramers, as
shown in Fig. 2(b); when � ¼ 1 slanted tetramers appear,
as shown in Fig. 2(c). This behavior is signaled by the form
of the Rabi energy, whose maxima lie between a group of
vortices. When the tension of the neighboring domain wall
and anti-domain wall is small enough they can bend toward
each other and constitute a bound state, because of the
attraction between them. The structure of the lattice is
schematically reported in the rightmost panels of
Figs. 2(a)–2(c). However, these bound states are metastable
and when 1=10 & !R=� & 1=4 they split into dimers, as in
Figs. 2(e)–2(g). The phase separation for � > 1 prevents the
formation ofmultidimer bound states and only single dimers
are formed even for higher values of !R=�, as shown in

FIG. 2 (color online). In all subfigures the left panel is a plot of the density profile of the condensate, n ¼ j�1j2 þ j�2j2 (dark grey
dots are vortices of the first or the second component), the middle panel is a plot of the Rabi energy in Eq. (2) (white is positive,
identified with domain walls), and the right panel is a schematic drawing of the lattice structure. The domain walls joining vortices are
depicted as red lines and the vortices in the first and in the second component are distinguished by empty or filled circles. The values of
the parameters � and!R are shown for each case. The lattice defect in (d) appears just by chance and in fact it resolves with increasing
!R, as can be seen in subfigure (h). Panels (e)–(g) show the same cases of (a)–(c) with higher !R. To visualize the domain walls, the
plots of the phase difference between the two condensates are given in the Supplemental Material [35].
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Figs. 2(d) and 2(h). This happens because, for � > 1, even
with very small!R, there are no dimers whose domainwalls
are so close to bend and form multidimer molecules. This
can be seen from Figs. 2(d) and 2(h).

When !R increases further, the lattice modifies drasti-
cally. The reason for this modification is that for large
values of!R the dimers are undistinguishable from integer
vortices, in which the positions of the vortices of the first
and the second components coincide. Integer vortices repel
each other and are organized in an Abrikosov lattice.
However, to reach the Abrikosov configuration, the various
lattices of fractional vortices must be deeply modified. This
modification is achieved when 1=4 & !R=� & 1=3. The
vortices change their partners.

We were able to find the elementary patterns of
rearrangement, shown in Fig. 3. In the rightmost panel of
each subfigure schematic, representations of the process
of partner changing are reported. We indicate with round
solid boxes the dimers left unchanged, while the dashed
boxes represent the formation of new dimers. When 0<
� & 0:3 the lattice is triangular for!R=� & 1=4, but when
!R is increased the domain walls connecting vortices in
dimers can break and reconnect as depicted in Fig. 3(a).
The partner changing process can be realized along three
different directions. This is due to the discrete rotational
symmetry of the two-component hexagonal vortex lattice
appearing when � < 0:3. All these possibilities are realized
in general. When the lattice structure is very symmetric, as
in the case of Fig. 3(a), the lattice is divided into three
domains separated by a domain wall junction, as can be
seen from the picture in the left panel where the density
profile of the condensate is shown. In general, configura-
tions with more defects are obtained, as shown in the
Supplemental Material [35].

If 0:3 & � < 1, the vortices can change partners in two
different ways, as shown in Figs. 3(b) and 3(c). The right-
most panels represent the patterns of the partner changing
processes, with the same conventions as of Fig. 3(a). As can
be seen from the schematic diagram in Fig. 3(b), four
vortices forming a square cell change their partner, while
links in the adjacent square cell are kept unchanged. The
situation is different in Fig. 3(c), where vortices change
their partner in alternating rows. The disposition of the
dimers depicted in the bottom rightmost panel of Fig. 3(c)
is similar to that of Fig. 2(h). However, for � > 1 the free
energy is minimized when vortices of the same component
are close to each other, forming vortex sheets. Instead in the
case of Fig. 3(c), the lower energy is achievedwhenvortices
belonging to the same component are well separated. This
explains why in 2(h) vortices of the same component of
adjacent dimers are close to each other, while in 3(c) they
are not. The rearrangement of Fig. 3(b) is difficult to obtain
in the whole lattice; nevertheless, limited portions of the
lattice always show this pattern, in the indicated parameter
ranges, as reported in the Supplemental Material [35].
The pattern of Fig. 3(c) is frequently obtained when � is
in the square lattice range.

In conclusion, we have found a rich variety of lattices
which can appear in two-component BECs where internal
coherent coupling is induced. We introduced the interac-
tion via Rabi oscillations and studied systematically its
effect on the vortex lattice, increasing gradually the fre-
quency !R from !R ¼ 0. The vortex lattice is reorganized
when!R is increased up to high values in order to reach the
triangular lattice configuration where all dimers become
integer vortices. During this process multidimer bound
states are formed and vortices can exchange partners in
different ways, depending on the form of the fractional
vortex lattice. The patterns of the exotic vortex lattices
which we have found in this Letter can be easily distin-
guished from the usual triangular or square lattice from
observations for instance by the time of flight.

FIG. 3 (color online). (a–c) The different partner changing
patterns that we have identified. The left panel in each subfigure
shows the plot of the density profile of the condensate n ¼
j�1j2 þ j�2j2 (dark grey dots are vortices of the first or the
second component) and the middle panel shows the Rabi energy
in Eq. (2) (white is positive, identified as domain walls).
Schematic reproductions of the modifications on the dimers and
of the lattice itself after the partner changing took place are shown
in the right panel in each row. The domain walls joining vortices
are depicted as red lines and the vortices in the first or in the
second component are distinguished by empty or filled circles.
The domain walls are broken and reconnected to be new sets of
dimers indicated by the dashed round boxes; the dimers indicated
by solid round boxes are instead kept unchanged. To visualize
the domain walls, the plots of the phase difference between the
two condensates are given in the Supplemental Material [35].
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