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We study colonies of nonmotile, rod-shaped bacteria growing on solid substrates. In our model, bacteria

interact purely mechanically, by pushing each other away as they grow, and consume a diffusing nutrient.

We show that mechanical interactions control the velocity and shape of the advancing front, which leads to

features that cannot be captured by established Fisher-Kolmogorov models. In particular, we find that the

velocity depends on the elastic modulus of bacteria or their stickiness to the surface. Interestingly, we

predict that the radius of an incompressible, strictly two-dimensional colony cannot grow linearly in time,

unless it develops branches. Importantly, mechanical interactions can also account for the nonequilibrium

transition between circular and branching colonies, often observed in the lab.
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Active matter, which constantly takes energy from its
environment in order to do work [1], has recently attracted
much interest. Particular examples are collections of cells
such as tissues and suspensions of swimming bacteria
[2–4], and microbial colonies, in which activity is caused
by growth, death, and migration of cells. The combination
of these three factors has been shown to lead to a variety of
interesting and universal patterns [5–8]. For example, bac-
teria such as B. subtilis or E. coli grown on Petri dishes
form patterns ranging from circular, through Eden-like [9],
to diffusion-limited aggregationlike patterns [10]. Such
patterns have been traditionally modelled using a system
of diffusive Fisher-Kolmogorov equations [11,12] which
combinemigration (diffusion of bacteria), bacterial growth,
and nutrient diffusion. This approach, however, does not
accurately represent the growth on surfaces on the micro-
scopic level, where expansion is caused by cells pushing
each other out of the way as they grow, rather than by
migration.

In this Letter, we study the role of mechanical interac-
tions in the growth of dense colonies on solid substrates.
Inspired by recent experiments in microfluidic devices
[13], we study quasi-two-dimensional growth of a colony
of nonmotile single-celled organisms which consume
nutrient in order to grow and divide. We argue—supported
by computer simulations and analytical calculations—that
mechanical interactions between bacterial cells can
account for the emergence of a nonequilibrium transition
between quasi-circular and branched colonies as a function
of the ratio between the nutrient consumption rate and the
growth rate. The strength of mechanical interactions deter-
mines the speed with which the colony expands in space,
with diffusion of the nutrient playing a secondary role. We
also show that the leading edge of the front is very sharp,
and the bacterial density is discontinuous at the front, in
contrast to a smooth, exponential profile predicted by

models based on coupled Fisher equations [8,12]. Our
results are relevant to the growth of biofilms [14–16],
which are ubiquitous in nature and are involved in a
variety of medical and technological problems. As
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FIG. 1 (color online). (a),(b) Snapshots from the simulation of
N � 105 cells, for low (a) and high (b) values of the branching
parameter � (see also, videos in Supplemental Material [19]).
Colors correspond to the local nutrient concentration, see the
color map on the right. Only a thin layer of cells grows appreci-
ably. (c),(d) Growth in a narrow, long strip, for low (c) and high
(d)�. The frame is comoving with the front. (e) Roughness of the
front�h (blue or dark points) and fraction of space filled by cells,
s (red or light points), as a function of� (flat geometry, box width
L ¼ 250 �m). Table shows parameter values used; k was in-
creased to 100 in (b) and (d). These are the default parameter
values used in the rest of the Letter unless otherwise stated.
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mechanical interactions may alter the colony morphology,
and the fixation probability of (potentially harmful)
mutants [17,18], understanding their role is of paramount
importance.

We simulate bacteria using two-dimensional Newtonian
dynamics. Cells are modelled as growing spherocylinders
of constant diameter d ¼ 1 �m and variable length that
split in half to yield two cells when they reach some critical
length ‘c (usually 4 �m). The colony grows on a two-
dimensional flat surface with nutrient concentration cðx; yÞ.
The nutrient diffuses with diffusion constant D. Initially,
c ¼ c0 everywhere, and c is always held constant at the
edges of the simulation box, which is made large enough
that the boundary does not affect the growth. Nutrients are
consumed at a rate kfðcÞ per unit biomass density, where
fðcÞ is a monotonically increasing dimensionless function.
In most simulations, we use aMonod function c=ðchalf þ cÞ
with half-saturation constant chalf . Cells grow (by elonga-
tion) at a rate vgfðcÞ. All parameters and their values are

detailed in the Supplemental Material [19].
The cells interact mechanically. The force between over-

lapping bacteria is assumed to be given by the Hertzian

theory of elastic contact [13,20,21]:F ¼ Ed1=2h3=2whereh
is the overlap and E parametrizes the strength of the inter-
action and is proportional (modulo a dimensionless prefac-
tor) to the elastic modulus of the cells, and the dynamics
is overdamped so that velocity is proportional to force,
v ¼ F=� , where � is the friction coefficient.

We start our simulations from either a single initial cell
or a line of cells, and follow the shape of the colony after
many rounds of cell replication, leading to a circular
colony or a horizontal advancing front, respectively.
Figure 1 shows that the morphology of a large colony of
bacteria can be either smooth or branched, depending on
the parameters of the model.

By performing simulations for different parameter sets
we have found that the fate (smooth or branched) of the
colony is determined by a dimensionless ‘‘branching pa-
rameter’’ � ¼ ðk�0Þ=ð�c0Þ, where �0 is the close-packed
cell density, and the other parameters have been defined
previously.

For small values of �, the front of the colony remains
smooth throughout the simulation [Figs. 1(a) and 1(c)],
whereas for large values branches develop [Figs. 1(b) and
1(d)]. Note that, as in real colonies [17], the nutrient
becomes depleted within the colony so that only cells in
a thin layer at the front are growing. To pinpoint the
location of the transition, we compute the roughness of
the front [Fig. 1(e)], defined as the mean square deviation
of points on the front from its average position, as in
Ref. [6]. At � ’ 0:9, there is a transition from a flat to a
rough front, whereas at � ’ 1, there is a switch between a
quasicircular front and one with branches, demonstrated
by the filling fraction s falling below 1. This behavior is
similar to that observed in Ref. [6].

This transition between branched and smooth colony
fronts is well known in real colonies [22] and has been
the subject of many theoretical studies [8,12], which usu-
ally attribute it to the interplay between diffusion (migra-
tion) of bacteria and diffusion of the nutrient. In our model,
however, the transition is driven by the uptake of nutrient
by the cells and their growth by mechanical pushing, and is
unaffected by the diffusion rate of the nutrient.
To gain a better understanding of this transition, we

approximate the growing colony as an incompressible
cellular ‘‘fluid’’ [23]. Mass conservation in such a fluid is
described by the equationr � v ¼ �fðcðxÞÞ, where v is the
fluid velocity, fðcÞ is the dimensionless nutrient uptake
function, and � is the growth rate of the cellular fluid,
given by � ¼ vg=‘c. Let us begin with a one dimensional

case of a colony advancing from the left and consuming
nutrient, and characterized by a single number x0ðtÞ which
is the position of the front

@tcðx; tÞ ¼ D@2xcðx; tÞ � k�0fðcðx; tÞÞ�ðx0 � xÞ; (1)

vðx0Þ ¼ dx0
dt

¼ �
Z x0ðtÞ

�1
fðcðx; tÞÞdx: (2)

Here D is the nutrient diffusion constant, k the rate of
uptake of nutrient by cells, �0 the cell density (constant
everywhere due to incompressibility), and � is the
Heaviside step function. Because cells do not migrate
and they are tightly packed, the density is either �0 or
zero, and hence, Eq. (2) can be derived from the continuity
equation and the incompressibility condition, assuming
that �ðx; tÞ ¼ �0�ðx0ðtÞ � xÞ. We also impose boundary
conditions that cð�1Þ ¼ 0 and cð1Þ ¼ c0.
We first determine whether Eqs. (1) and (2) admit a

travelling-wave solution cðx; tÞ ¼ ĉðx� vtÞ � ĉðzÞ in the
limit t ! 1, where the velocity v of the front is constant.
The resulting equations for ĉðzÞ and v are

�vĉ0ðzÞ ¼ Dĉ00ðzÞ � k�0fðĉÞ�ð�zÞ; (3)

v ¼ �
Z 0

�1
fðĉðzÞÞdz: (4)

For z > 0, the solution to Eq. (3) is given by ĉðzÞ ¼ c0 þ
Ae�vz=D [as cð1Þ ¼ c0]. For z < 0, we can rearrange the
equation to yield fðĉðzÞÞ ¼ ð1=k�0Þ½Dĉ00ðzÞ þ vĉ0ðzÞ�,
which, upon insertion into Eq. (4), gives

v ¼ �

k�0

½Dĉ0ð0Þ þ vĉð0Þ� ¼ �c0
k�0

v; (5)

where we have integrated by parts, and used the fact that ĉ
vanishes at �1, and that ĉ and ĉ0 must be continuous at
z ¼ 0. Therefore, a solution for v exists only if�c0 ¼ k�0

(or � ¼ 1) exactly: we have found that in the incompress-
ible limit the front cannot advance at a constant speed. This
is in contrast to the Fisher framework, where travelling
waves exist for a range of parameters. Numerical solutions

PRL 111, 168101 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

18 OCTOBER 2013

168101-2



of Eqs. (1) and (2) fully confirm our prediction, showing
exponential growth for �< 1 and sublinear growth for
�> 1, see Supplemental Material [19]. This is only true
if the growth and the uptake rate on c have the same
functional form, fðcÞ. This is a good approximation for
E. coli and other bacteria with low maintenance costs [24],
but is not true in general [25]. Choosing different depen-
dencies on c for these rates, however, leads to qualitatively
similar conclusions, with constant growth possible in a
narrow window of � close to 1.

The hint from this simplified 1Dmodel is that� ¼ 1 is a
critical value that separates different regimes of colony
growth. For �> 1, growth is limited by nutrient diffusion,
whereas for �< 1 diffusion does not play any role.
However, the front has more freedom in 2D than in 1D—
it can become branched. Since this transition occurs close
to � ¼ 1, it is appealing to conjecture that the branching
transition in Fig. 1 is linked to the switch in growth laws for
incompressible colonies described above.

Second, incompressible theory predicts that growth can-
not be linear, unless� ¼ 1 exactly. This is inconsistent with
experimental results: the size of a colony of nonswimming
bacteria growing on stiff agar gels does increase linearly
with time [26]. Moreover, our simulations also lead to a
finite steady state speed. The speed found in simulations
depends on the elasticity E, as can be seen in Fig. 2(a),
suggesting the compressibility of the cells is important.

Generalizing the theory above to compressible cells in
1D, we now need equations for mass and momentum
conservation, as well as the nutrient diffusion equation

@tc ¼ D@2xc� k�fðcÞ; (6)

@t�þ @xð�vÞ ¼ ��fðcÞ; (7)

@xp ¼ ���v: (8)

The term ��v describes the friction between the surface
and the cells. The pressure pð�Þ is determined by

the force acting between the cells. We take p½�ðxÞ� ¼
E½1� �0=�ðxÞ�3=2 to be consistent with our simulations,
because the force that acts between two overlapping cells is

then proportional to Ed1=2h3=2, where h ¼ d½1� �0=�ðxÞ�
is the overlap. �0 is the uncompressed density of closely
packed cells.

Although Eqs. (6)–(8) cannot be solved analytically,
numerical solution (see Supplemental Material [19]) shows
that a travelling wave now exists for �< 1. The density
profile close to the edge decays according to a power law
towards the uncompressed cell density �0. This is in strik-
ing contrast to Fisher-Kolmogorov waves, which exhibit
exponential density profiles in the wave tip [12]. Many
other properties of the solution to Eqs. (6)–(8) can be
deduced without solving the equations. First, a ‘‘biomass
conservation law’’ from Eqs. (6) and (7) states that one unit
of nutrient biomass makes �=k units of bacterial biomass,

and hence the density �ð�1Þ deep in the colony must be
�c0=k. This explains why a travelling wave solution can-
not exist in the incompressible case: unless the cell density
�0 equals exactly �c0=k it will not match the density of
biomass produced by the nutrient. It also explains why
there is a morphological transition to branched colonies
at � ’ 1: growth of a compact colony is not possible for
�> 1 as it would need to have a density less than �0.
Finally, it suggests that if bacteria are restricted to grow as
a monolayer, then, when nutrient is abundant, they will
grow exponentially until intermicrobial forces within the
colony are so large that the bacteria in the middle are
squashed to the appropriate density �0=�.
We can estimate the velocity of the travelling wave using

a simple scaling argument. At steady state, the cells are
compressed to the strain � � 1� �, and the pressure
profile has to rise from 0 at the edge of the population to
a maximal value p� in the bulk within a boundary layer of
characteristic size �. The characteristic length � can be
eliminated by estimating it to be the length by which the
front moves in one generation � � v=½�fðc0Þ�. The bulk
value of the pressure p�ð�Þ is just large enough that the
density of the population is compressed down to the strain
�. The elastic constitutive relation p�ð�Þ of the microbial

population fixes the corresponding pressure, with p�ð�Þ ¼
E�3=2 in our case of Hertzian contacts between cells. The
pressure p� pushes the front population at the speed v
against the friction force v��0�, where ��0 acts as a
friction coefficient per unit length. Thus, force balance
yields

v �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�fðc0Þp�ð�Þ

��0

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�fðc0Þ
��0

s
gð�Þ; (9)

where gð�Þ ¼ ð1� �Þ3=4.
To test the above formula, we performed a fully one-

dimensional version of our simulations described above, as
this removed the effects of branching and was much more
computationally efficient. The results are shown in Fig. 3.

Figure 3(a) shows that the front speed grows as
ffiffiffiffi
E

p
as

predicted by Eq. (9), and Fig. 3(b) shows that the depen-
dence of v on � is in good agreement with the numerically
and theoretically predicted gð�Þ, although the theoretical

(a) (b)

(c)

FIG. 2. Steady state speed of colony growth, v, as a function of
various parameters, for 2D simulations in the quasi-1D geome-
try. (a) and (b) have fits to a square root function. In (b), � is
varied while holding � constant (by inversely varying k).
(c) shows the dependence on � (c0 is varied while keeping other
parameters constant), with a change in behavior around � ¼ 1.
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form gð�Þ ¼ ð1� �Þ3=4 is only accurate for � close to 1.
Figure 2 shows that the square-root dependence onE and�
also holds in the 2D case, but the function gð�Þ is again
different, and does not go to zero for �> 1, due to the
branching. In the SupplementalMaterial [19], we perform a
more rigorous derivation of Eq. (9), showing that it is valid
when the dimensionless parameter G ¼ E=ð�D�0Þ � 1
and� is close to 1.We also show thatmechanics-dominated
growth G � 1 is relevant for any experimentally feasible
parameters. An interesting feature of this limit is that, since
the dynamics are dominated by mechanics rather than
nutrient diffusion, v does not depend on D.

So far, our findings are relevant to bacteria growing in
monolayers. On agar plates, however, cells are observed to
build up vertically in the colony center [27,28]. To probe
how this affects our results, we simulate a colony growing
in a vertical 2D plane xz (where the z axis is perpendicular
to the substrate) instead of the xy plane from previous
simulation. We also incorporate attractive cell-substrate
interactions, and we model the diffusion in the z < 0
half-plane only, which models the substrate. This situation
is far more computationally efficient than fully 3D simu-
lations (see Supplementary Material [19]), and still allows
us to study the effect of vertical growth. As is apparent
from Fig. 4(a), cells do now escape out of the plane they
start from, due to the force exerted by neighbors. The size
of the colony once again grows linearly in time. However,
it is not compressibility, but the possibility of escape into
the vertical direction, which leads to linear growth.

In fact, if the bulk pressure p�ð�Þ, which builds up in a
strictly two-dimensional setting, is larger than some critical
pressure pc, cells will escape into the z dimension. As a
consequence the pressure profile will saturate at pc in the
bulk of the population. In our scaling argument for the speed
of the front growth, we then have v � f½�fðc0Þpc�=
ð��0Þg1=2. Figures 4(b)–4(e) show that, in contrast to the
2D case, the expansion speed v� ffiffiffiffi

�
p

is now independent

of the consumption rate k, elastic modulus E, and the
diffusion constant D. Note that while the radial growth is
independent of k, the vertical growth will be affected by it.
In conclusion, we have studied the growth of bacterial

colonies where nonmotile microorganisms replicate and
push each other away as they grow. We find a transition
between two different growth regimes, controlled by the
balance between growth and uptake of nutrients. Our
model differs from biofilm simulations [29,30] which
do not explicitly model mechanical forces. We also find
that the functional form of the density profile close to the
bacterial edge qualitatively differs from those predicted
by Fisher-Kolmogorov models, and predict that the speed
at which the front propagates depends only weakly on the
nutrient diffusion rate D, for a wide range of D. Our
predictions should be experimentally testable, especially
in 3D, or directly in 2D using a microfluidic device
restricting cell growth to a single layer. This could be
used to estimate the elastic modulus of the cells through
Eq. (9).
Additionally, our results may be relevant in other situ-

ations involving the growth of cells under limiting condi-
tions, such as animal and cancerous tissues, which similarly
involve a collection of cells proliferating and pushing on
each other as they grow, often with their growth limited by
the diffusion of nutrients.Mechanical interactions are under-
stood to be very important in such systems; in particular,
mechanical pressure has been hypothesized to strongly
affect the growth and apoptosis rates of cells, leading to an
alternative form of growth limitation [31–33]. Simulations
and experiments indicate that this can lead to a steady state
speed of growth [31]. It would be interesting to model this
effect in our framework, and to study its interplay with
nutrient limitation of growth.
We thank R. J. Allen and M.R. Evans for helpful com-

ments on this manuscript. O. H. thanks the Deutsche
Forschungsgemeinschaft (DFG) for financial support
(Grant No. A15, SFB 937). B.W. acknowledges the sup-
port of a Leverhulme Trust Early Career Fellowship.
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FIG. 3 (color online). Dependence of front speed on parame-
ters in the fully 1D simulation. (a) Front speed as a function of
elastic modulus E, with fit to v ¼ A

ffiffiffiffi
E

p
. (b) Transition from

moving to stopped front as a function of �, which occurs when
� ¼ 1. gð�Þ [defined by Eq. (9)] is plotted against � (by varying
k) for � ¼ 10 (open circles), 20 (triangles), and 30 (closed
circles), showing a good collapse. Here E ¼ 4	 106, D ¼
100. Solid line corresponds to theoretical gð�Þ ¼ ð1� �Þ3=4,
and red (grey) circles are the numerical solution of Eqs. (6)–(8).
Inset: v as a function of D, showing no dependence.
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FIG. 4 (color online). Quasi-3D colony growth. (a) Snapshot.
(b) Speed of radial colony growth against �, with fit to A

ffiffiffiffi
�

p
.

(c)–(e) Speed against k, E and D, showing little dependence on
any of these parameters. Parameters not being varied take their
default values (Fig. 1).
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