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Relaxation of soft modes (e.g., charge density in gated semiconductor heterostructures, spin density in
the presence of magnetic field) slowed down by disorder may lead to giant enhancement of energy transfer
(cooling power) between overheated electrons and phonons at low bath temperature. We show that in
strongly disordered systems with time-reversal symmetry broken by external or intrinsic exchange
magnetic field the cooling power can be greatly enhanced. The enhancement factor as large as 10° at
magnetic field B ~ 10 T in 2D InSb films is predicted. A similar enhancement is found for the ultrasound

attenuation.
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Introduction.—A number of recent experiments show
that energy transfer (the cooling power) J(T,, Tp,) =
J(T) — J(Tp,) between overheated electrons with tem-
perature T¢; > T, and phonons at low bath temperature
T,, may vary by several orders of magnitude when mea-
sured per one electron per volume. The outflux J(T) =
WTP may have different power-law temperature depen-
dence with the exponent p both smaller and larger than the
classical result p = 5 valid for pure metals. In disordered
metals with complete screening of Coulomb interaction
and impurities that are fully involved in the lattice motion,
one expects [1-3] a power law with p = 6 which corre-
sponds to weaker energy transfer compared to the clean
case. This is related to the “Pippard ineffectiveness condi-
tion” (denoted as PIC below) [4,5] formulated for the rate
of inelastic electron-phonon scattering. A very accurate
experiment in metal films of Hf and Ti [6] confirmed this
theoretical expectation, including the value of the prefactor
W in front of T®. At the same time, experiments on heavily
doped Si [7], which also demonstrated the 7¢ behavior,
gave at low temperatures the value W/n, (n, is the carrier
density) larger by a factor of 10° than the theoretical
prediction in Refs. [1-3]. Surprisingly, the 7% behavior of
the cooling rate with approximately the same values of
W /n, as in Ref. [7] was extracted from recent experiments
[8] on amorphous InO films showing weakly insulating
behavior in the magnetic field of 11 T. In this case W/n,
was larger by a factor of 5 X 10* than the theoretical
prediction for a dirty metal approaching the Anderson
transition. Clearly, neither of the above cases with anom-
alously large cooling rate correspond to the piezoelectric
type of electron-phonon coupling where the PIC does not
hold and the theory predicts T* temperature behavior of the
cooling rate [9,10]. It is also dubious that the model of
impurities, which is only partially involved in the lattice
motion [2] that also leads to enhanced cooling rate with 7*
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temperature behavior, is realistic for the cases in question.
Thus, there was a quest from experiment for a different and
more general mechanism of enhancement of cooling rate in
strongly disordered conductors.

In the present Letter we demonstrate the existence of a
general mechanism which is capable of enhancing by a
factor 102-10° both the cooling power J(T) and the ultra-
sound attenuation 7'p_h1 (for longitudinal phonons) at low

temperatures. This mechanism is effective if the lattice
motion is able to induce significant oscillations of local
densities of certain globally conserved physical quantities.
The deviations of these local densities from their equilib-
rium values are enhanced by the slow diffusive character of
electron motion (characterized by both small frequency
and small momentum) aimed to restore equilibrium. This
leads to a significant retardation in the response and thus to
the entropy production and dissipation. The proposed
mechanism is reminiscent of the Mandelstam-Leontovich
(ML) mechanism of phonon attenuation in liquids [11]. In
contrast to PIC which suppresses the relaxation rate T;hl at
strong disorder and small carrier concentration, the ML
mechanism is efficient at these conditions. The particular
realizations of such a mechanism were studied previously
in the literature. Specifically, the relatively weak Coulomb
interaction between electrons in semiconductors, when the
local electroneutrality condition is not strictly obeyed and
the density fluctuations are not completely suppressed, was
a cause of enhancement of cooling rate discussed in
Ref. [12]. The asymmetric intervalley modes were shown
[13] to lead to a significant enhancement of cooling rate in
multiple-valley semiconductors such as Si. Below we
reproduce some of these results from our general approach.

However, a very new effect we are predicting is the giant
enhancement of the cooling rate and ultrasound attenuation
in the presence of external magnetic field or in ferromag-
netic materials where the role of external magnetic field is
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played by the intrinsic exchange field. In this case it is the
spin-density mode, which can be excited by absorption of a
phonon or terminated by creation of a phonon, that is
responsible for the enhanced ultrasound attenuation or
the enhanced cooling rate.

Cooling power and ultrasonic attenuation.—We start by
considering the quantum kinetic equation [14,15] for the
phonon distribution function B,(w, T) in the case of par-
tial equilibrium in both electron and phonon subsystems
with temperatures T > Ty

athh(a): Tph) = [Bph(w: Tel) - Bph(a); Tph)]T;hl(wr Tel)'
(L

If the electron-phonon energy relaxation is much slower
than the electron-electron one and the phonon system is
well coupled to the thermostat (refrigerator), a quasiequi-
librium situation with two temperatures is realized. In this
approximation By,(w,T) = By, (w/T) = (1/2)[coth(w/2T)
—1] is the equilibrium phonon distribution function. The
phonon decay rate Tl;h' is then given by the imaginary part

of the phonon self-energy 2% (w, g, T):

T (@0, Tg) = —— Im3R(@, ¢, Tlymrg )

m

The phonon decay rate depends only on the electron tem-
perature, since the (weak) electron-phonon interaction is
considered in the leading approximation, and thus the
phonon self-energy (which is second order in the e-ph
coupling) is expressed in terms of electronic variables
only. If in addition the effect of the electron-electron
interaction is reduced to charge screening considered in
the RPA approximation, the phonon relaxation rate
Ton (@, Tey) = 7/ () does not depend explicitly on the
electron temperature.

Now the energy flow J = dE,,;,/dt from hot electrons to
cool phonons can be written as follows: J = J(Ty) —
J(Tyh), where

. 00 B h(a)/T)
J(T)_.[o dwvah(a))m, 3)

and vy, (w) = ©?/(27*v3) is the phonon density of states
for 3D phonons with the sound velocity v,. Equations (2)
and (3) establish a relationship between the cooling rate
J(T) and the attenuation time 7, (@) of ultrasound with the
frequency w. In particular, it follows from Eq. (3) that, for
the power-law dependence 7! (w) * w”, the cooling rate
due to 3D phonons is proportional to J(T) « T*A.

Local and diffusion contribution to cooling rate.—In
impure conductors there are two distinctly different con-
tributions to the phonon relaxation time. One is local and
determined by the small distances [r — r/| ~ [ between the
points r and r’ of phonon absorption and reemission. The
other one allows many scattering events of electrons off

impurities between the points r and r'. This is the diffusive
contribution. With increasing disorder and decreasing the
mean free path /, the local contribution diminishes. This
leads to the so-called PIC when the relaxation rate T];hl (w)

of phonons with momentum ¢ is proportional to lg*> < g
instead of Tp_hl « g for longitudinal phonons in the clean

case [4,5]:

1

C = Cq
70 ()

2
2vpy Dg? ~ mn,
pm pm

Dq?, “4)

where v is an electron density of states per spin [16], pr =
muvg is Fermi momentum, n, and p,, are the density of
electrons and the mass density of material, D = vyl/d, is
the diffusion coefficient, ¢ = w/v, < 1/1 is the phonon
momentum, and d, is the dimensionality of electron
motion. The subscript « corresponds to the choice of either
transverse (tr) or longitudinal (/) phonons; correspond-
ingly, numerical coefficients ¢, are defined as ¢, =
1/2+d,) and ¢, =2(1 —d,;')/(2 + d,).

The diffusion contribution has an opposite trend and
increases with increasing disorder. The goal of our Letter
is to analyze this very contribution in different physical
situations.

We will use the comoving frame of reference (CFR)
bound to the lattice and impurities rigidly imbedded in it
and moving in the laboratory frame of reference (LFR).
Then, for a single branch of electrons, one finds [1,17] for
electron-phonon interaction in the CFR

He-ph = _Zpa(vﬁvﬁua)q ' 17/p¢p+q’ (5)

P.q

where p and v denote electron momentum and velocity,
respectively, and u is the lattice displacement. Note that
this term appears due to the inhomogeneous Galilean shift
pdu(r(z), r)/dt of the energy of a quasiparticle at a point
r = r(¢), while the usual deformation potential in LFR is
canceled by the modification of e-e interaction due to
inhomogeneous coordinate transformation [18] H—
U 'HU, with U =1 + (1/2){u, V}. The tensor structure
of Eq. (5) is crucial for local processes only, while for
diffusion processes, it is sufficient to average the e-ph
vertex over the Fermi surface. For a metal with isotropic
electron dispersion, one finds I'= p,(vgVgu,), =
pv/d,divu. In general, I' may contain other contributions.
In particular, for semiconductors I'" is known [19] to be
much larger than E due to contribution I'; originating
from the shift of conduction band edge E,.

Under the condition of strict electroneutrality, the scalar
vertex I is screened out completely and the classical result
Eq. (4) is valid. This is not the case, however, when N
different types of quasiparticles are present [13]. Then the
interaction can be written as
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N
Ho = > TOdiva(g ), (6)
i=1

J

where (v; is the partial DOS at the Fermi level):
IV = —pWyW)/d, + Ty,. (7)

Note that Eq. (6) is principally different from the e-ph
interaction in the LFR, even when I'y; = 0. The latter
contains the deformation potential I'y,; = Zjvj(pg)vg)/
d,)/¥.;v;, which is symmetric in the electron branch indi-
ces j, as well as in the moving-impurity part [1-3]. The
latter part leads to the mode asymmetry of the e-ph inter-
action in LFR which in CFR is provided by the Galilean
shift term.

The Coulomb interaction is able to screen out only the
single mode corresponding to the total density n =
3 j(J/ #);, whereas N — 1 asymmetric modes survive
screening [13,17]. Their slow, diffusive character in
strongly disordered conductors may lead to a considerable
enhancement of the cooling rate and ultrasound attenu-
ation. The particular case of the effect of such unscreened
diffusion modes was studied in Ref. [13] for the case of N
species of electrons corresponding to N inequivalent val-
leys in semiconductors.

Below we present a simple derivation of the diffusion-
enhanced contribution to the phonon relaxation rate T;hl in
terms of macroscopic equations for the current and density
of electrons; an alternative diagrammatic derivation is pre-
sented in [20], Sec. III. In the CFR the continuity and
diffusion equations for each ith species of quasiparticles
read

a,n + divj® =0, j» = —DVn® — ,FO,  (8)

where (i) stands for the quasiparticle branch number, n®) is
the electron density, j is the particle number current, «; =
v;D; is the mobility, D; is the diffusion coefficient for the ith
branch, F) = —VU®, and U® is the potential energy. In
the simplest derivation we assume no interbranch mixing
and thus the continuity equations in Eq. (8) imply that each
of the partial electron densities n?) are conserved sepa-
rately. Generalization to the case where there is mixing
between the branches will be done at the end of the Letter.
The potential energy U = U, + ® in Eq. (8) consists of
the Coulomb part U and the phonon part @) = I'divu:

Ui = _/Vo(l‘ - r/)zcsn(j)(l‘/) + TOdiva, — (9)
J

where V) (r) is the bare Coulomb potential acting between
conduction electrons [below we use its Fourier transform
Vo(g)]. Note that Vj(g) does not include screening by
conduction electrons in the sample.

Equations (8) and (9) are a full set of equations describ-
ing the diffusion and screening of partial densities n;. Let

us first study their solution in the case of perfect screening
and multiple electron branches (N > 1). It formally corre-
sponds to I1(w, g)Vy(g) > 1, where Il(w, g) is the total
polarization function. For the density modulation n'(w, g)
induced by the phonon with frequency w and momentum
g, one finds from Egs. (8) and (9),

nNw, q) = (o, ¢)[Pi(w, q) — Pe(w, q)]  (10)

where ®;(w, g) = Tdiva, ®c = 3, @,I1,;/3 11, repre-
sents dynamical screening of the Coulomb interaction, and
I, = v;D;q*/(—iw + D;q?) is the partial polarization
function. The solution Eq. (10) obeys charge neutrality:
Mot = 2. n' = 0.

The diffusion contribution to the phonon decay rate may
be expressed as Tl;thL = |Q,|/E,,, where Q, and E,, are
the dissipation power and the acoustic wave energy in a
unit volume, respectively:

0, =LRe(G B,  E,=Pmoud. (1)
2 2
Here, u,, is an amplitude of ionic displacement and u =
(q/q)u,, expl—iwt + iq - r]. Below we apply Eq. (11) to
compute 7! ().

Giant enhancement by magnetic field —The case of
N = 2 quasiparticle branches has a very important appli-
cation. It corresponds to the two spin projections. However,
they should be inequivalent with respect to the coupling to
phonons. This is a consequence of the general statement
that the spin density can be excited by phonons only if
time-reversal invariance is broken. First, we discuss the
case when time-reversal invariance is broken by external
magnetic field.

For N = 2 a simple calculation based on Egs. (10) and
(11) leads to the following expression for the diffusion
contribution to the decay rate of acoustic phonon:

(Fl - F2)2 V*D*q2
pm  V:+ Dig”

o (9) = (12)
where v, = w/q is the sound velocity, while v, = (v;! +
vy ! and D, = v [(v;D))' + (v,D,)7']7! are the
effective density of states and diffusion coefficient,
respectively.

When a parallel magnetic field H is applied to a
two-dimensional electron gas, the bottom of the spin-
down and spin-up conduction bands gets shifted by
+(1/2)uH with respect to their position at H = 0. This
leads to a change of 8(ppvyp) = TuH, where (1/2)u =
(g/2)up is the electron magnetic moment. Thus, from
Eq. (7) we conclude that an asymmetry I} —1') =
(2/d,)wH arises due to the Galilean shift of the quasipar-
ticle energy. Then, according to Eq. (12), the phonon
relaxation rate acquires an H-dependent contribution that
may become dominant at sufficiently strong field and low
phonon frequencies. Adding the local contribution (4) and
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the magnetic-field-controlled diffusion contribution,

Eq. (12), one finds for the full phonon decay rate T;hl =

[TS;IC)]”,’FH(q, h), where for q parallel to 2D gas
vih?
h)=1+——"—. 13
Here, TS:‘IC) is given by Eq. (4) for longitudinal phonons and

h = (|w|H/2ef) (we assume here h << 1). The enhance-
ment factor Fy can become very large for strong spin
polarization, 4 ~ 1. In particular, for low phonon momen-
tum, g/ < v,/vp, the factor F is of the order of inverse
adiabatic parameter (vy/v;)> ~ 10°. The strong spin-orbit
interaction which leads to mixing of spin-up and spin-down
branches sets a limitation on the enhancement factor. Its
maximum value becomes Fp.« ~ Tso/7 (750 is the spin
relaxation time and 7 < 7gg is the momentum relaxation
time) instead of F,, ~ (vy/v,)?. This makes the optimiza-
tion of parameters to maximize the enhancement factor a
hard problem, since materials with a large g factor (to
maximize wH) usually have large spin-orbit coupling.
Nevertheless, the example of InSb films shows that
F ~ 107 is experimentally achievable (see Fig. 1).
Enhancement of cooling rate in ferromagnetic metals.—
Another relevant example is provided by ferromagnetic
metals with strong intrinsic band splitting due to the
exchange field. In the case of Fe, uH" = 1.8 eV,
ep=11.1eV, vp=198X10%cm/s, v,~6X10°cm/s.
The spin relaxation rate may be estimated as 7/7go~
(aZ)* ~ 1073, a@ = 1/137 and Z = 26 being the fine struc-
ture constant and the atomic number, respectively, resulting
in the maximum enhancement of the phonon relaxation time

as large as Fy ~ (uH*/ep)*(r50/7) ~ 10.
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FIG. 1 (color online). The total enhancement factor F =

Tgl? /Tpn at @ = 77/2 of ultrasound attenuation in the 2D semi-

conductor InSb. The parameters taken are n = 10'' cm™2,

prl =50, Ago = 0.1 meV, and magnetic fields are 3 T (blue
curves), 5 T (red curves), and 7 T (green curves). Dashed curves
represent the result in the absence of SO relaxation, Agy = 0.
The black dashed curve gives the enhancement F by incom-
plete screening.

Enhancement by incomplete screening.—In the case
of a single quasiparticle branch, the general approach,
Egs. (8), (9), and (11), describes the diffusion-enhanced
dissipation due to violation of the charge neutrality
condition at a large screening length. In this case, we
obtain n =2vDg*[—iw + Dq*> + 2kq*Vy(q)] ' ®(w, q)
and the enhancement factor

C[_I(F/pFUF)z
(vs/vp)* + d 2 (P[] + 2vVo(g) >

Fe=1+ (14)

For the 2D gas with Coulomb interaction and the constant
dielectric permittivity & of surrounding media, we have
Vo(q) = Vap(q) = 2me?/eq. In the relevant range of q
parallel to the 2D gas, the F(g) factor reduces to a
constant. This corresponds to the cooling rate J(T) « T
[12] but with the enhanced prefactor proportional to £2/g2,
(where g is dimensionless conductance per square in e?/h
units) at strong disorder and large dielectric constant €. In
3D conductors, when V((g) « g2, Eq. (14) has a regime
were F « g*. Correspondingly, the cooling rate appears
to be J(T) o« T8 [12].

An interesting situation arises in 2D electron gas in the
presence of a gate that additionally screens Coulomb in-
teraction and allows the density to fluctuate stronger. For
this geometry and q parallel to 2D gas, Vj(q) — V,(q) =
Vop(g)(1 — e24%), b being the distance between the 2D
electron gas and the gate. For phonons with wavelengths
1/q = b, the effective potential V,(q) = V(q)2gb =
const, and the presence of an adiabatic parameter in the
denominator of (14) does become important at low enough
temperatures:

2
Fep =14 24(F/f§vF) 2 3 (1)

: (vs/vE)? + (¢°F)(dmve’b/e)
where Coulomb interaction is still assumed to be relatively
strong: 27ve’b/e > 1. In this case there is a regime
where the enhancement factor is proportional to ¢~2, and
the cooling rate J(T) « T*.

Mode mixing and a realistic example.—Finally, we col-
lect results of the ML enhancement due to both the charge
density and the spin density fluctuations, also taking into
account mixing of spin projections by the spin-orbit inter-
action characterized by the parameter 7g4. We also con-
sider the dependence of relaxation rate on the direction
of phonon propagation relative to the 2D gas [20]. Both
effects lead to the replacement Dg?/(—iw + Dg?) =
Dqjj/(—iw + Dqj + 1/2750). It results in the total

enhancement factor of the form

qjvih’
(Dqj + 1/2750)

F=Fc, t+ (16)

(quy)* +
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For 2D electrons and 3D phonons, |q;| = ¢sinf is the
phonon momentum component parallel to the 2D system
which appears in all the terms originating from electron
diffusion. In this case, ¢, is independent of ¢, and F has
a maximum as a function of w. The spin fluctuation effect
given by the second term vanishes at small w because of
the mixing of branches caused by spin-orbit interaction. It
also decreases at large w because the dissipation power
increases slower with w than does the acoustic wave
energy. At large enough Zeeman splitting 2 when the effect
of spin fluctuations in its maximum is large, there is a wide
frequency region (the falling part of the curve F « w2 in
Fig. 1), where T;hl is almost frequency independent. In this

region the cooling or heating rate J(T) « T#InT for the
quasi-2D case. This temperature dependence is almost the
same as in the case of impurities which are not fully
involved in the lattice motion [21]. The extra logarithmic
factor arises because of the angular averaging of 1/ Ton(6)
dominated by the small values of 6. To illustrate this
behavior we consider a thin film of semiconductor InSb
(g factor |g| = 50). At strong (and parallel to the 2D plane)
magnetic fields |g|lugH > Agg classification in terms of
the spin subbands is still valid approximately, in spite of
the Rashba spin-orbit coupling Agg. The analysis pre-
sented in [20], Secs. IV and VI, leads to Eq. (16) and is
summarized in Fig. 1.

In conclusion, we demonstrated the existence of a
general relaxation mechanism that leads to enhancement
of both the e-ph cooling power and the phonon decay
rate. In particular, it may lead to a strong enhancement
of the cooling power in disordered conductors in the exter-
nal magnetic field or in disordered ferromagnetic metals.
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