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We calculate the ground state phase diagram of the homogeneous electron gas in three dimensions

within the Hartree-Fock approximation and show that broken symmetry states are energetically favored at

any density against the homogeneous Fermi gas state with isotropic Fermi surface. At high density, we

find metallic spin-unpolarized solutions where electronic charge and spin density form an incommensu-

rate crystal having more crystal sites than electrons. For rs ! 0, our solutions approach pure spin-density

waves, whereas the commensurate Wigner crystal is favored at lower densities, rs * 3:4. Decreasing the

density, the system undergoes several structural phase transitions with different lattice symmetries. The

polarization transition occurs around rs � 8:5.
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The understanding of electrons in solid state and con-
densed matter has been one of the major challenges since
the discovery of quantum mechanics. The simplest model
system representing condensed matter is the homogeneous
electron gas (jellium) where electrons interact with each
other and with a uniform positive charged background
density 3=ð4�a3Br3sÞ instead of the nuclei, where aB is the
Bohr radius. For almost a century, jellium has been the
central model for qualitative and quantitative studies of
electronic correlation [1–10].

The Hartree-Fock (HF) approximation plays an abso-
lutely fundamental role in tackling many-body electron
problems. As the best possible description within the in-
dependent particle approximation, it provides both a ref-
erence and a starting point for any more sophisticated
calculations. However, even though the HF ground state
of jellium has been the subject of research over the years
[10–12], the ground state phase diagram as a function of
the density has still not fully been established. At low
density, potential energy largely dominates over the kinetic
energy, and the electrons form the so-called Wigner crystal
(WC), the ground state in the classical limit, whereas in
the limit of vanishing rs the ideal Fermi gas (FG) is
approached. Overhauser has argued that the FG solution
never represents the true HF ground state at any finite
density [10]. Only quite recently, indications for a ground
state with broken spin symmetry in the high density region
were found in explicit numerical calculations for small and
moderate sizes [12]. However, its energy gain compared to
FG has not been established in the thermodynamic limit.

Here, we present the Hartree-Fock phase diagram cover-
ing relevant crystal structures [13]. Generalizing previous
approaches to form charge and spin broken symmetry
states [10,12], our study also includes the possibility of
incommensurate crystals of charge and spin density. In
contrast to WC states, the number of maxima of the charge

and spin density there differs from the number of electrons,
thus providing broken symmetry states with metallic char-
acter [14,15]. At high densities, we find that these incom-
mensurate states are favored against FG andWC leading to
spin density waves (SDW). Our method allows us to treat
large enough systems to obtain results valid in the thermo-
dynamic limit, necessary to clearly establish the tiny gain
of energy for these states. Our study also suggest new
candidate ground states for jellium and jelliumlike systems
[16] that should be explored by more accurate many-body
approaches [1,9].
We consider a system of N electrons in a volume V,

embedded in an homogeneous background of opposite
charge, interacting through the Coulomb potential using
periodic boundary conditions. Hartree-Fock solutions are
Slater determinants j�i ¼ V

�2S j��i constituted by a set
S of single-particle states ��. The Hartree-Fock solutions
can be defined by a one-body density matrix �1 such that
Tr�1 ¼ 1 and 0 � �1 � 1=N. The two-body density
matrix �2 satisfies

�2ð1; 2; 10; 20Þ ¼ �1ð1; 10Þ�1ð2; 20Þ � �1ð1; 20Þ�1ð2; 10Þ:
(1)

Now we restrict our study to periodic states. Let �� be the
lattice generated by L1, L2, L3. Our periodic simulation
box is a parallelepiped of sizes MLi, for some integer
M, and volume V �M3, where we assume �1ðrþLi; r

0 þ
LiÞ ¼ �1ðr; r0Þ. The reciprocal lattice � is generated
by Q1, Q2, and Q3 (Li �Qj ¼ 2��ij), and �1 can be

written as

ð�1c Þðkþ q; �Þ ¼ X
q02�;�0

�kðq; �;q0; �0Þc ðkþ q0; �0Þ;

(2)
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with k 2 B, q 2 �, where B is the Brillouin zone of �,
and �k are positive matrices satisfying 0 � �k � 1=N.

In the following, we concentrate on fully polarized (P) and
unpolarized (U) states where �k is restricted to a two compo-
nent vector, Tr�k" ¼ Tr�k#, but �k" may differ from �k#. We

have checked that theground state is eitherUorP except close
to the polarization transition (see Supplemental Material

[13]).Without any specification, kF¼½6�2Na3B=ðnsVÞ�1=3¼
�=rs, �3 ¼ 9�=ð2nsÞ, denotes the Fermi wave vector
according to the polarization of the corresponding state,
with ns ¼ 2 for U and ns ¼ 1 for P. For FG solutions, we
have �k;�ðq;q0Þ ¼ �qq0�ðkF� k kþ q kÞ=N and the

energy per electron is EFG ¼ 3k2F=10� 3kF=ð4�Þ ¼
3�2=ð10r2sÞ � 3�=ð4�rsÞ in hartree units.

On the other hand, in the Wigner crystal, each �k is 1=N
times a projector of rank ns. This case has already been
considered with various symmetries in Ref. [11], but their
solutions did not lower the energy for rs � 4:4, and a
transition to the FG has been predicted.

Of course, the true ground state solutions are expected to
be somewhere between the FG and WC solutions.
Unrestricted HF calculations for small systems [12] (N <
103) have indicated the possibility of a spin-density wave
in this region with energy gains of order 10�4 hartree with
respect to FG. In fact, at small rs, as the system goes to the
FG, the crystalline order remains but the Brillouin zone
becomes partially occupied. In particular, the number of
particles per unit cell is not known a priori. The purpose of
this Letter is to find these extremal periodic states without
extra hypotheses for various lattice symmetries. In our
notation, pure SDW are U states verifying �k"ðq;q0Þ ¼
��k#ðq;q0Þ, for q � q0.

Thus, we search for a lattice � and a density matrix �k

such that the number of particles per unit cell is near ns (or
some multiple of ns for non-Bravais lattices). Notice that
for extremal states, the eigenvalues of �k must be exactly 0
or 1=N. The number of strictly positive eigenvalues is not
known a priori, but is expected to fall between 0 and 2ns
(or some multiple of 2ns for non-Bravais lattices).

We truncate the number of vectors of the sublattice �,
including only the firstM� bands: �k is a square matrix of
order nsM�. The condition 0 � �k � 1=N is difficult to
fulfill, so we choose the representation

�k ¼ X
i

Dk;ijuk;iihuk;ij; (3)

where huk;ijuk;ji ¼ �ij and 0 � Dk;i � 1=N. Since the

number of strictly positive Dk;i is between 0 and 2ns, we
can restrict the summation in Eq. (3) over 2ns terms instead
of nsM�. The number of unknowns is thus of order 2nsM�

times the number of vectors of B. This is why we can deal
with a large number of particles [17].

The minimization consists of the following steps. First,
we chooseDk;i and juk;ii to start with. Then, forDk;i fixed,

we find the best juk;ii with a quadratic descent method

[14]. The next step is to try to improve Dk;i given the

gradient of the energy with respect to Dk;i and the linear

constraints 0 � Dk;i � 1=N and
P

k;iDk;i ¼ 1. We thus

obtain a new set DðnewÞ
k;i (either 0 or 1=N), and we change

Dk;i into ð1� "ÞDk;i þ "DðnewÞ
k;i (with a small enough " to

ensure that juk;ii followsDk;i adiabatically) and we restart

the minimization with respect to juk;ii. The process stops

as soon asDðnewÞ
k;i ¼ Dk;i. In this case almost everyDk;i is 0

or 1=N and the gradient is negative or positive accordingly.
The parameters are rs (for the density), the lattice sym-

metry, the (smallest) modulusQ of the generators of�, the
number M3 of points in the Brillouin zone B, and the
number M� of plane waves per single-particle state.
A priori, we look for lattices with the lowest Madelung

energies as they will lead to the more stable states at low
densities. However, as the density increases, other lattices
may become more favorable. Investigated lattices are sim-
ple cubic (sc), face-centered cubic (fcc), body centered
cubic (bcc), and hexagonal (Hex) (see Table I).
For WC phases, Q ¼ QW , whereas Q � QW character-

izes incommensurate crystals, and Q � 2kF leads to the
FG solution with isotropic Fermi surface at kF. Increasing
M� increases the basis resulting in a lower energy due to
the variational principle. Our discretization of the Brillouin
zone ranges from M ¼ 32 up to M ¼ 128, which corre-
sponds to effective system sizes with a number of electrons
(�M3) much larger than those of Ref. [12].
Finite size effects are important in fermionic Coulomb

systems [19] and, contrary to M�, there is no variational
principle. As the memory size increases / M2

�M
3, pure

TABLE I. The best overall ground states depending on rs (last
line). IC stands for incommensurate crystal, otherwise it is WC.
nm is the number of maxima of charge density per unit cell [18].
T is the shift between the spin-up and -down lattices, in the
conventional (Cartesian) cell basis for sc, fcc, and bcc lattices,
and in the primitive cell basis for Hex and Hexð2Þ (number in
parenthesis is the number of sites per cell). T1 ¼ ð13 ; 23 ; 12Þ, T2 ¼
ð12 ; 0; 14Þ. The asterisk means close to. The last line of each table

indicates the range of rs where each phase may be in the ground
state.

Unpolarized

Symmetry IC bcc Hexð2Þ (hcp�) fcc sc Hex

nm 2 4 2 2 2

Charge IC bccð2Þ Hexð4Þ sc bcc hcp

T ( 12 ,
1
4 , 0) T2 ( 12 , 0, 0) ( 12 ,

1
2 ,

1
2 ) T1

rs 3–3.4 3.4–3.7 3.7–5.9 5.9–9.3

Polarized

Symmetry sc Hexð2Þ (hcp) fcc bcc

nm 1 2 1 1

QW=kF 1.61 0.88 1.76 1.81

rs 9.3–10.3 10.3–13 13–
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numerical extrapolation to the thermodynamic limit
(M ! 1) is difficult. Therefore, to accelerate conver-
gence, we have included finite size corrections:

�EM 	 EM � E1 ¼ Eð1Þ
M þ Eð2Þ

M þ ENA; (4)

where Eð1Þ
M �M�1 is the Madelung energy, Eð2Þ

M is an ana-
lytical potential energy error of order M�2, and ENA con-
tains the nonanalytical energy corrections of order M�3.

From the FG potential energy, Eð2Þ
M can be estimated as

Eð2Þ
M ¼ �

�
�

�M

SðkÞ
k k k

��������k!0

�
Eð1Þ
M ; (5)

where�3 is the volume ofB, and SðkÞ is the structure factor
[for FG, limk!0SðkÞ= k k k¼ 3=ð4kFÞ]. Note that Eð2Þ

M is
maximum for FG, decreases with Q for incommensurate
solutions, and vanishes for WC. As can be seen in Fig. 4,

removing Eð2Þ
M greatly improves the thermodynamic limit

extrapolation. However, the remaining nonanalytical con-
tributions of order 10�6 hartree become comparable to the
energy gain at high densities and prevent a precise deter-
mination of the ground state for rs & 3. Extending the
analytical calculations of Ref. [20] from two to three dimen-
sions, one can prove that the incommensurate phases are
always energetically favorable for rs ! 0.
The accuracy of our results is essentially controlled at

large rs byM� (�k smooth but extended) and at small rs by
M (�k rapidly varying around kF). Figure 1 shows the
energy differences �E ¼ E� EFG versus the modulation
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FIG. 1 (color online). Energy versus the modulation Q at
various rs for the unpolarized gas in the bcc symmetry. Lines
come from a global polynomial fit on the numerical results
(circles) of order 2 and 3 in rs andQ, respectively. rs is indicated
at the start of each curve. Thick dashed lines go through the local
minima. The leftmost vertical straight line stands for Q ¼ QW .
Inset: Enlargement of the dotted rectangle of the main figure.
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FIG. 2 (color online). Momentum distribution per spin nðkÞ
for incommensurate solutions in bcc symmetry. (a) Iso surface at
nðkÞ ¼ 0:5 for Q=kF � 1:827, rs ¼ 4:2, M ¼ 64, and M� ¼
19. The jump of nðkÞ from 0 to a nonzero value is shown in blue.
Black arrows stand for reciprocal lattice vectors (Q1, Q2, Q3).
(b)–(d) Cut of nðkÞ in the plane (Q1, Q2) at k3 ¼ 0, Q=4, and
Q=2, respectively. Black areas correspond to nðkÞ ¼ 0. Contour
levels are at 0.99, 10�3, and 10�5. (e)–(h) Same as (a)–(d) for
Q=kF � 1:940 and rs ¼ 3:2.
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FIG. 3 (color online). Phase diagram of the electron gas:
unpolarized (a),(b); polarized and unpolarized (c). Energies are
in millihartrees for (a) and (b), and in hartrees for (c), where
EM ¼ 0:89593=rs is the Madelung energy of a polarized bcc
Wigner crystal. Full lines stand for incommensurate regime
(Q>QW) and dashed lines for the Wigner crystal (Q ¼ QW).
Colors refer to the lattice (see Table I). (a) Enlargement of
(b) around E� EFG ¼ 0. (c) Thin lines stand for the polarized
gas (upper curves) and thick lines for the unpolarized gas [13].
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Q at various rs for the U bcc symmetry. At large rs, the
minimum is found for Q ¼ QW . At smaller rs, a minimum
is eventually reached for Q>QW . As seen in Fig. 1, two
local minima may occur. Furthermore, at the local minima,
the best solutions are always found with only one band
[i.e., for each k 2 B in Eq. (3), at most one Dk;i is

nonzero].
The momentum distribution nðkÞ shows how the incom-

mensurate states interpolate between the Wigner phase and
the Fermi gas as rs decreases (Q going from QW to 2kF).
For WC, the first band in B is fully occupied and nðkÞ
is everywhere continuous. At Q * QW , the first band
becomes partially filled and unoccupied volumes appear
around the corners of B [see Figs. 2(a)–2(d)], leading to a
possible minimum at some Qmin. Thus nðkÞ is discontinu-
ous at the surface of these volumes but stay continuous in
other directions. As Q increases, the volumes connect,
allowing an eventual second minimum at Q & 2kF [see
Figs. 2(e)–2(g)]. At Q ¼ 2kF, the Fermi sphere is com-
pleted, where nðkÞ is discontinuous at the Fermi surface.

By construction, the real-space density nðrÞ has the
crystalline symmetry of the lattice. In the incommensurate
phase (IC), the number of maxima is greater than the
number of electrons and depends on Q. At large rs, the
numbers coincide; this is the Wigner crystal. We define a
contrast by C ¼ ðnmax � nminÞ=ðnmax þ nminÞ which goes
from 0 to 1 as rs goes from 0 to infinity, where nmax and
nmin are the maxima and minima of nðrÞ. For the unpolar-
ized gas, we define the contrast for each spin species and
for the total charge. As shown in Fig. 5, the contrast
decreases rapidly as rs goes to zero; it is expected [20] to
be a nonanalytic function at rs ¼ 0. Note that the charge
density modulation is much smaller than each spin modu-
lation in the unpolarized gas demonstrating the SDW
character of the ground state.

The final phase diagram of the unpolarized and polar-
ized gas is reported in Fig. 3 and Table I. At high density,
the incommensurate states have SDW character with mod-
ulations Q>QW which increase at smaller rs towards
Q ¼ 2kF. As only states close to the Fermi surface are
relevant in this region, energy gains compared to FG
become very tiny. Our resolution in k space is insufficient
to determine the precise modulations for rs < 3, which
introduce small anisotropies in the Fermi surface for Q<
2kF. Nevertheless, our calculations explicitly confirm the
instability of the FG towards SDW [3,10] and indicate that
the spin modulation continuously approaches Q ¼ 2kF
with isotropic Fermi surface for rs ! 0.
To conclude, we have established the true ground state

phases of jellium within the Hartree-Fock approximation
over a broad density region. In particular, we have shown
that the Overhauser instability [10] of the FG results in a
new ground state in the thermodynamic limit, character-
ized by an incommensurate crystal structure for the spin
and charge density. However, it is known that the Hartree-
Fock approximation tends to favor crystalline phases, as
the gain in correlation energy is typically higher in
the isotropic FG phase than in the WC [1]. Therefore, the
transition to the WC is quantitatively incorrect within the
HF approximation and shifted towards considerably higher
values of rs in the true ground state phase diagram.
Whereas correlations certainly stabilize the FG at small
rs, correlations should favor incommensurate phases com-
pared to WC for the same reason, so that incommensurate
states should actually occur at densities close to crystal-
lization. We hope that future QMC calculations will be
able to establish this new phase beyond the HF
approximation.
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