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Delay of Light in an Optical Bottle Resonator with Nanoscale Radius Variation:
Dispersionless, Broadband, and Low Loss
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It is shown theoretically that an optical bottle resonator with a nanoscale radius variation can perform a
multinanosecond long dispersionless delay of light in a nanometer-order bandwidth with minimal losses.
Experimentally, a 3 mm long resonator with a 2.8 nm deep semiparabolic radius variation is fabricated

from a 19 um radius silica fiber with a subangstrom precision. In excellent agreement with theory, the
resonator exhibits the impedance-matched 2.58 ns (3 bytes) delay of 100 ps pulses with 0.44 dB/ns
intrinsic loss. This is a miniature slow light delay line with the record large delay time, record small
transmission loss, dispersion, and effective speed of light.
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The speed of photons is always equal to the speed of
light ¢. However, a light pulse propagating through an
optical structure does not get from point r, to point r; in
time |r, — r,|/c since it can be absorbed and reemitted,
reflected, trapped by a resonant state, travel through a
curved waveguide, etc. Regardless of the propagation
details the effective speed of light can be determined as
v = L/7, where 7 is the actual time of travel from r, to r,,
and L = |r, — r,| is the size of the propagation region.

The intriguing problem is to identify the photonic struc-
ture with the smallest size L that can perform the required
delay 7 of a pulse of width A7 without distortion. The quest
for such structures is central in the slow light research
[1-6]. Besides general interest, these structures are of great
importance for their potential key role as delay lines in
optical computing and transformation of data on a chip.
For this reason, the research efforts were targeted at the
demonstration of a slow light delay line (SLDL) with
the smallest dimensions for a given delay time and band-
width and smallest possible attenuation and dispersion of
pulses. Solving this problem is complicated by the funda-
mental delay-bandwidth product limitation which estab-
lishes the smallest possible dimensions of a photonic
structure enabling the time delay 7 of a pulse with the
spectral width AA [7,8].

To arrive at the smallest dimensions, the SLDLs are
usually engineered from chains of coupled microresona-
tors with fabrication precision as small as a few nano-
meters [3]. However, this high precision is still not
sufficient for the creation of the smallest possible
SLDLs, since nanometer variations in dimensions cause
spectral fluctuations comparable with the bandwidth of
telecommunication pulses [3-6,9]. In addition, due to
material and scattering losses, the attenuation of the
miniature SLDL demonstrated to date is very large,
measured in the range of 10-100 dB/ns [10], and calls
for alternative solutions.
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This Letter presents a fundamentally different type of
SLDL, which, in contrast to the miniature delay lines
considered previously [1-6,10,11], is not based on the
photonic structures created by modulation of the refractive
index. Instead, the slow propagation of light is ensured by
multiple rotations along the surface of a super-low-loss
optical fiber—the idea proposed in Ref. [12]. In excellent
agreement with the experiment, the theory presented
herein shows that a bottle resonator [13-16] formed by
nanoscale semiparabolic radius variation of an optical fiber
[Fig. 1(a)] can be impedance matched to the input or output
waveguide. As a result such a resonator can perform a
multinanosecond delay of light at telecommunication
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FIG. 1 (color online). (a) Illustration of an optical bottle reso-
nator delay line. Light is coupled into the resonator from a
transverse waveguide (microfiber) and experiences whispering
gallery mode propagation along the resonator surface. Inset
shows the magnified profile of the fiber radius variation.
(b) Semiparabolic variation of a bottle resonator radius used in
the numerical simulations.
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wavelengths within a nanometer-order bandwidth having
minimal losses and dispersion.

It is known that the whispering gallery modes (WGMs)
propagating along the optical fiber can be fully confined
with the dramatically small nanoscale effective radius
variation Ar(z) = r(z) — ry [17,18]. In the cylindrical
frame of reference (z, p, ¢), the coordinate dependence
of the WGM field is separable and expressed as
exp(im)A,(p)¥(z), with orbital and radial quantum
numbers m and n. For the wavelengths A close to a reso-
nance cutoff wavelength A, [19], the z dependence of
the WGM propagating along the fiber is described by the
one-dimensional Schrodinger equation [20]

\Pzz + [E()l) - V(Z)]q’ =0, (D)

with propagation constant B(A, z) = VE(A) — V(2).
In Eq. (1) the energy E(A) and potential V(z) are deter-
mined as

E(A) = —Kk*AN/ Ay, V(z) = —k2Ar(2)/ry, (2)
where k = 23271,/ Areq, AX = A — A — iy, n, is the
refractive index of the fiber, and y determines the attenu-
ation of light in the fiber. Equation (1) is valid for the
adiabatically slow variation of fiber radius r(z), i.e., when
ALroldr(z)/dz << Ay, where A is the separation of
A from the adjacent cutoff resonance [19]. This condition
is well satisfied for the smooth nanoscale variation Ar(z)
considered below.

Light in the bottle resonator is confined between turning
points z,; and z,, [determined as zeros of the propagation
constant, B(4, z,;) = 0] and coupled to the input or output
microfiber waveguide at contact point z, as illustrated in
Fig. 1(a). Since the microfiber diameter (usually ~1 wm)
is much smaller than the characteristic axial wavelength of
P(z) (=10 um), coupling to the microfiber can be
approximated in Eq. (1) by adding the §-function potential
Dé(z — z.) and source C8(z — z,) with complex-valued
coupling parameters C and D. In this approximation the
transmission amplitude S(A, z.) through the microfiber
coupled to the bottle resonator and the corresponding
group delay of light 7(A, z,.) are [20]

iICIPGA, 2, 20)
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where S, is the out-of-resonance amplitude and G(A, z;, z,)
is the Green’s function of the uncoupled bottle resonator
defined by Eq. (1) with boundary conditions W(z) — 0 at
large positive z — z,, and z;; — z. For elongated bottles
with slow and smooth radius variation, the solution of
Eq. (1) can be found in the semiclassical approximation
[21] (for details see Supplemental Material [22]),

_ cos[@(A, z,1, 2) + x1lcos[@(A, z, z) + xa2]
B(A, z1)sin[@(A, 2,1, 20) + x1 + x2]

oAz, 2) = [Z B(A, z)dz. 4)
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where parameters y; ~ 1 are the phase increments near the
turning points z,;.

A light pulse launched from the input microfiber into the
bottle resonator at contact point z,. slowly propagates along
the resonator axis in both directions and returns back after
reflecting from turning points z;;and z,,. Generally, after
completing the round-trip between one of the turning
points and the contact point, the pulse does not fully return
back into the microfiber output and is partly reflected into
the resonator. The reflection at z, determines the imped-
ance mismatch between the input and output microfiber
and resonator and causes bouncing of the pulse between
turning points with decreasing amplitude. In the stationary
formulation described by Egs. (3) and (4), oscillations of
the pulse correspond to oscillations of the transmission
amplitude and group delay as a function of wavelength.
Averaging the group delay found from Egs. (2)-(4) over
the local period of these oscillations yields the average
group delay, which, for relatively small coupling loss
[11], coincides with the classical time of the round-trip
propagation along the bottle resonator

A%es fzfz 6:8()‘: Z)

mc Jz,,  0A

(A) =

dz. (5)

From Eq. (4) the smallest period of oscillations coincides
with the local spacing between the axial eigenvalues of the
uncoupled bottle resonator equal to AAg = AZ /cT(A).
Suppression of these oscillations leads to the condition of
impedance matching when the pulse is fully transmitted
from the microfiber input into the bottle resonator and,
after completing the round-trip along the resonator axis z,
it is fully transmitted back into the microfiber output.

Remarkably, it is possible to solve the impedance
matching problem for the bottle resonator locally near
wavelength A; without modification of the bottle profile
Ar(z) [23]. As shown in the Supplemental Material [22],
the oscillations of transmission amplitude and group delay
are suppressed at wavelength A; at a microfiber position z;
which is close to turning point z,; if

Im(Sy) =0, |CI> = 28, Im(D), (6)

B(A;, z;) = Im(D),
Im(D)/Re(D) = tan[@(A;, 2,1, 2;) + X1l

(7)

Equation (6) is the condition of lossless coupling between
the microfiber and resonator [20] when the considered
SLDL is all-pass and, hence, has no transmission power
oscillations. Equation (7) establishes the additional rela-
tions between A;, z;, and coupling parameter D which
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allow the group delay oscillations to vanish as well. These
impedance matching conditions are illustrated in the nu-
merical example below and also approximately achieved in
the experimentally demonstrated SLDL.

To avoid dispersion, the eigenfrequencies of the bottle
resonator should be locally equidistant, which is typical for
large and smooth quantum wells V(z) away from their
bottom. However, the slowest axial speed of light corre-
sponds to the bottom of quantum well. To arrive at the
dispersionless propagation with the smallest possible speed,
the shape of the bottle resonator in this region should
have the equidistance frequency spectrum. This condition
is satisfied for the bottle resonator with semiparabolic
radius variation Ar(z) = Ary — z2/(2R) for 0 <z < L =
(2RAr)'/? and Ar(z) = 0 elsewhere [Fig. 1(b)]. Here R is
the axial curvature of the bottle resonator and L is its
length. The classical wavelength-independent time delay
in this structure found from Eq. (5) is

7=2"Y27n,L(ry/Ary)"/?/c. 8)

The parameters of a semiparabolic bottle SLDL in Fig. 1
are chosen to model the experiment below (resonator
length L = 3 mm, fiber radius r, = 19 um, semiparabola
height Ary = 2.8 nm, fiber refractive index n, = 1.46, and
material attenuation y = 0.1 pm). For these parameters,
Eq. (8) yields the delay time 7 = 2.67 ns and effective
speed of light L/7 = ¢/267. Figures 2(a) and 2(b) are the
surface plots of the resonance amplitude and group delay
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distributions as a function of wavelength and distance
along the bottle resonator in the vicinity of z,;, where the
impedance matching conditions [Eqgs. (6) and (7)] are
satisfied at wavelength variation AA; and coordinate z;.
The spectral profiles crossing the impedance matched point
(A Ay, zy)are shown in Figs. 2(c) and 2(d). The amplitude
and group delay ripples vanish at (AA;, z;) and are rela-
tively small in the neighborhood of this point. Figure 2(e)
shows the time domain propagation of a 100 ps pulse
through the constructed SLDL [the amplitude spectrum
of the pulse is depicted in Fig. 2(c)]. It is seen that the
spurious temporal ripples at the output are remarkably
small (<8.5% in magnitude [Fig. 3(b)] and thus <0.7%
in intensity) and the FWHM pulse broadening in Fig. 3(b)
is negligible. The average delay time found from the
spectrum in Fig. 2(d) and from the time domain calculation
in Fig. 2(e) is in excellent agreement with the value 2.67 ns
found from Eq. (8).

An SLDL enabling the dispersionless delay of a pulse
with a different temporal width A7, = sA7 and the same
delay time 7 can be simply constructed by rescaling the
height of the parabola Ar, and its length L to

Ar, = s 'Ar, L,=s""2L. 9)
The magnitude of spurious ripples of the new delay line
remains the same (see Supplemental Material [22]).

Experimentally, the 3 mm long bottle resonator SLDL

was created at the 19 um radius optical fiber with the
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FIG. 2 (color online). (a),(b) Surface plots of the transmission amplitude and group delay near the edge z = z,; of the bottle
resonator calculated with the coupling parameters defined in the text. (c),(d) Transmission amplitude and group delay spectra at the
coupling point z. = z; shown in (a) and (b), respectively. (e) The output signal amplitude (solid line) calculated for the input 100 ps
pulse (dashed line). The pulse spectrum is determined by the bold line in (c).
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FIG. 3 (color online). (a) Illustration of an optical bottle reso-
nator delay line. Inset shows the magnified profile of the fiber
radius variation. (b) Experimentally measured surface plot of the
transmission amplitude measured at microfiber positions spaced
by 10 wm along the fiber axis, which was used to determine the
bottle resonator radius variation (bold line).
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surface nanoscale axial photonics (SNAP) technology,
which enables the predetermined nanoscale modification
of the optical fiber radius with the record subangstrom
precision by annealing with a focused CO, laser beam
[20,24]. The speed of the beam was varied to ensure the
required nanoscale semiparabolic profile of Ar(z). The
introduced radius variation Ar(z) was calculated using
Egs. (2)—(4) from the surface plot of resonance spectra,
which was measured at microfiber positions spaced by
10 um along the fiber axis [20,25,26] [Fig. 3(b)]. The
depth of Ar(z) is 8 nm, while the parabolic part of Ar(z)
has the depth of 2.8 nm and was introduced with a precision
of better than 0.9 A.

The values of coupling parameters C and D were opti-
mized by translation of the microfiber taper with respect to
the bottle resonator to arrive at two sets of wavelengths and
contact points with suppressed oscillations of the group
delay and transmission amplitude. These sets, (A, z;), and
(A3, z2) [Figs. 4(a) and 4(b)] correspond to the same y
coordinate of the microfiber taper and, hence, to the
same microfiber-to-resonator coupling parameters C and
D. At contact point z;, the vicinity of wavelength A,
[Figs. 4(a)-4(d)] corresponds to the propagation of light
near the top of quantum well V(z). This case is used below
as a reference. At contact point z,, the vicinity of wave-
length A, [Figs. 4(a), 4(b), 4(e), and 4(f)] correspond to the
slowest propagation in the parabolic part of quantum well
V(z), the case of our main interest.

Figures 4(g) and 4(h) show the time-dependent propa-
gation of a 100 ps Gaussian pulse calculated from the
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FIG. 4 (color online). (a),(b) Surface plots of the transmission
amplitude and group delay near the edge z = z,; of the fabri-
cated bottle resonator measured after the optimization of cou-
pling parameters by translation of the microfiber with respect to
the resonator. (c),(d) Transmission amplitude and group delay
spectra at the coupling point z, = z; corresponding to minimum
spectral oscillations in (a) and (b), respectively. (e),(f) The same
as (c),(d) but at the coupling point z. = z,, which corresponds to
the semiparabolic part of the potential V(z). (g),(h) The output
signal amplitudes (solid line) calculated for the input 100 ps
pulse (dashed line) from the spectra measured at points z; and z,,
with the pulse spectrum determined by the bold line in (c) and
(e), respectively.

measured spectra shown in Figs. 4(c)-4(f), respectively.
The average group delays in Figs. 4(d) and 4(f) are in
excellent agreement with the delay times 1.17 and 2.58 ns
in Figs. 4(g) and 4(h). Comparison of the average trans-
mission amplitudes in Figs. 4(c) and 4(e) and the corre-
sponding delay times determines the intrinsic loss of the
demonstrated device equal to 0.44 dB/ns.

Since the optimization was performed only approxi-
mately, out-of-resonance coupling losses ~2 dB (irrele-
vant to intrinsic losses and, thus, independent of the delay
time) were introduced. However, even in this case, the total
insertion loss of the 2.58 ns (3 bytes) delay line has the
impressive record value of 3 dB, i.e., 1.12 dB/ns, as
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compared to 10-100 dB/ns losses previously demon-
strated for miniature delay lines [3—6,10]. The spurious
temporal ripples in Fig. 4(h) are remarkably small (<11%
in magnitude and thus <1.2% in intensity) and the FWHM
pulse broadening is negligible [<3%, which is 4 times
smaller than the pulse broadening for significantly smaller
delay in Fig. 4(g)]. In addition, the effective speed of light
in this SLDL is ¢/258, the record small for the engineered
slow light photonic structures [3-6].

In summary, the demonstrated bottle resonator with
nanoscale radius variation is a fundamentally different
type of a slow light delay line not based on periodic
modulation of the refractive index. It presents a solution
to the central problem of the slow light research—creation
of a miniature delay line with a breakthrough performance.
This demonstration also emphasizes the flexibility of the
SNAP platform [20,24] as a fruitful source for exciting
fundamental and applied studies. A similar approach will
allow creating a variety of photonic structures that pre-
cisely imitate one-dimensional quantum mechanical struc-
tures described by the potential V(z) under interest. This
includes potential structures that can be used for investi-
gation of tunneling and time delay [27-29], Anderson
localization [30,31], localized states in continuum
[32,33], etc. This also includes intriguing opportunities
for creating photonic microdevices for filtering, switching,
lasing, delay of light, and sensing with unprecedented high
precision and low loss.

The author is grateful to Y. Dulashko for assisting in the
experiments and to D.J. DiGiovanni, T. Kremp, and V.
Mikhailov for helpful discussions.
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