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The existence of bound states of the system (�, e, e, e) in amagnetic fieldB is studied using the variational

method. It is shown that for B * 0:13 a:u: this system gets bound with total energy below the one of the

(�, e, e) system. It manifests the existence of the stable He� atomic ion. Its ground state is a spin doublet
2ð�1Þþ at 0:74 a:u: * B * 0:13 a:u: and it becomes a spin quartet 4ð�3Þþ for larger magnetic fields.

For 0:8 a:u: * B * 0:7 a:u: the He� ion has two (stable) bound states 2ð�1Þþ and 4ð�3Þþ.
DOI: 10.1103/PhysRevLett.111.163003 PACS numbers: 32.10.Ee, 31.15.xt

Astrophysical objects such as magnetic white
dwarfs may have surface magnetic fields of 108–1010 G
(�0:1–10 a:u:) while neutron stars typically reach
1012–1013 G (�103–104 a:u:) or even 1015 G (�106 a:u:)
in the so-called magnetars. In the presence of such strong
magnetic fields the chemical properties of atoms and mole-
cules change dramatically. In particular, it makes possible
the formation of unusual chemical compounds such as the
Hþþ

3 ion at B * 1010 G [1] (for a review see [2] about one-

electron molecular systems, and [3] about two-electron
atomic-molecular systems, and references therein). A
separate question of interest concerns the existence of
negative atomic ions in a magnetic field. An immediate
observation is that the induced quadrupole moment—
charge interaction of the atomic core with an electron is
repulsive: it can influence binding. Thus, it was quite a
striking theoretical result that the simplest negative atomic
ion H�, which possesses the single bound state [4], devel-
ops an infinite number of bound states in the presence of a
magnetic field [5]. A similar situation may occur for the
case of the negative atomic ion He� which does not seem
to have a stable bound state in the field-free case [6,7], but
can become bound in a magnetic field.

The goal of this Letter is to explore the possibility of
having stable bound states of the 1-center Coulomb system
(�, e, e, e) in a magnetic field checking the existence of the
negative ion He�. Our main motivation to study the nega-
tive ion He� in a magnetic field comes from the recently
observed spectra of white dwarfs which indicate the pres-
ence of atomic helium on the surface of some of these
astrophysical magnetized objects, see, e.g., [8]. Therefore,
the existence of He� ions can be of relevance to interpret
the observed absorption features in the spectra. In this
Letter atomic units (@ ¼ e ¼ me ¼ 1) are used through-
out, and the magnetic field is measured in units of
B0 ¼ 2:35� 109 G.

The nonrelativistic Hamiltonian for a three-electron,
one-center system in a magnetic field (directed along the
z axis and taken in the symmetric gauge) with an infinitely
massive nucleus is

H ¼ �X3
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where rk is the 3-vector momentum of the kth electron, rk
is the distance between the kth electron and the nucleus, �k

is the distance of the kth electron to the z axis, and rkj (k,

j ¼ 1, 2, 3) are the interelectron distances. L̂z and Ŝz are
the z components of the total angular momentum and total

spin operators, respectively. Both L̂z and Ŝz are integrals of
motion and can be replaced in (1) by their eigenvalues
M and Sz, respectively. Z is the nuclear charge (for He�

Z ¼ 2). The total spin Ŝ and z-parity �̂z are also conserved
quantities. The spectroscopic notation �2Sþ1M�z is used to
mark the states, where �z denotes the z parity eigenvalue
(�), and the quantum number � labels the degree of exci-
tation. For states with the same symmetry, for the lowest
energy states at � ¼ 1 the notation is 2Sþ1M�z . We always
consider states with � ¼ 1 and Sz ¼ �S assuming they
correspond to the lowest total energy states of a given
symmetry in a magnetic field.
The variational method is used to explore the problem.

The recipe for choosing the trial function is based on
arguments of physical relevance: the trial function should
support the symmetries of the system, has to reproduce the
Coulomb singularities of the potential correctly, and repro-
duce the asymptotic behavior at large distances (see, e.g.,
[2,9,10]). It implies that electron-electron interaction plays
an important role; thus, the correlation should be intro-
duced into trial functions in exponential form� expð�rijÞ,
where � is a variational parameter.
Following the above, a trial function for the spin 1=2

lowest energy state is chosen in the form

c ð~r1; ~r2; ~r3Þ ¼ A½�ð~r1; ~r2; ~r3Þ��; (2)

where � is the spin eigenfunction, A is the three-particle
antisymmetrizer
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A ¼ 1� P12 � P13 � P23 þ P231 þ P312; (3)

and�ð ~r1; ~r2; ~r3Þ is the explicitly correlated orbital function

�ð~r1; ~r2; ~r3Þ ¼
�Y3

k¼1

�jMkj
k eiMk�ke��krk�ðB=4Þ�k�

2
k

�

� e�12r12þ�13r13þ�23r23 ; (4)

where Mk is the magnetic quantum number of the kth
electron, and �k, �k, and �kj are nonlinear variational

parameters. In total, the trial function (2) contains 9 varia-
tional parameters. The function (2) is a properly antisym-
metrized product of 1s Slater-type orbitals, the lowest
Landau orbitals, and the exponential correlation factors
� expð�rkjÞ. We expect the ground state to be realized

by different states depending on the domain of magnetic
fields: guided by an analogy with the case of the lithium
atom in a magnetic field (for a discussion, see [11]), we
assume the spin 1=2 states 2ð0Þþ, 2ð�1Þþ to correspond to
the ground state for small and intermediate magnetic fields,
respectively, while the spin 3=2 state 4ð�3Þþ is the ground
state for the large magnetic fields.

For the states 2ð0Þþ, 2ð�1Þþ of the total spin S ¼ 1=2we
have two linearly independent spin functions of mixed
symmetry

�1 ¼ 1ffiffiffi
2

p ½�ð1Þ�ð2Þ � �ð1Þ�ð2Þ��ð3Þ (5)

and

�2 ¼ 1ffiffiffi
6

p ½2�ð1Þ�ð2Þ�ð3Þ � �ð1Þ�ð2Þ�ð3Þ

� �ð1Þ�ð2Þ�ð3Þ�; (6)

where �ðiÞ, �ðiÞ are spin-up, spin-down eigenfunctions of
the ith electron. The spin function � in (2) is chosen as

� ¼ �1 þ c�2;

(for discussions see [12,13]), where c is the variational
parameter. For the entire range of studied magnetic fields, c
is different but close to zero. For the spin S ¼ 3=2 state
4ð�3Þþ with M1 þM2 þM3 ¼ �3, the spin part corre-
sponds to the totally symmetric spin function � ¼
�ð1Þ�ð2Þ�ð3Þ, and the orbital part �ð ~r1; ~r2; ~r3Þ is antisym-
metrized by applying the operator A [Eq. (3)].

The variational energy has a quite complicated profile in
the parameter space: use of standard minimization strat-
egies did not allow us to find aminimum reasonably fast. As
a result, most of the minimization was performed manually
using the procedure SCAN from the minimization package
MINUIT from CERN-LIB. Nine-dimensional integrals

which appear in the functional of energy are calculated
numerically using a ‘‘state-of-the-art’’dynamical partition-
ing procedure based on division of the integration domain
following the profile of the integrand, separating domains
with large gradients. Each subdomain was integrated

separately in parallel and with controlled absolute or rela-
tive accuracy (for details, see, e.g., [2]). Numerical integra-
tion of every subdomain is done with a relative accuracy of
�10�2–10�4 using an adaptive routine [14]. Parallelization
is implemented using theMPI library MPICH. Computations
are performed on aLinux clusterwith 96Xeon processors at
2.67 GHz each, and 12 Gb RAM.
The existence of a chemical compound is established

when the system possesses at least one stable bound state.
If such a bound state exists, it is characterized by a positive
ionization energy, i.e., the minimal amount of energy
which is necessary to add to the system to separate it into
two or more subsystems. In particular, the one-particle
ionization energy is defined as the energy needed to move
an electron to infinity. A bound state ofHe� is characterized
by definite values of the total magnetic quantum number
and z projection of the total spin (M, Sz). Then, such a state
is stable if its total energy is smaller than the sumof energies
of two subsystems (He-atom þe), i.e., if

EHe�
T ðM;SzÞ< EHe

T ðM0; S0zÞ þ Ee�
T ðMe� ; Sze� Þ; (7)

whereEHe
T ðM0; S0zÞ andEe�

T ðMe� ; Sze� Þ are the total energies
of theHe atom and the electron, respectively (see Ref. [15]).
The condition (7) must be valid for all possible decay
channels satisfying the conservation of the quantum
numbers

M ¼ M0 þMe� ; Sz ¼ S0z þ Sze� ; (8)

which are valid in the nonrelativistic approximation. For an
electron in a magnetic field, the total energy of the Landau
levels is given by

Ee�
T ðMe� ; Sze� Þ ¼ ðMe� þ jMe�j þ 2Sze� þ 1ÞB

2
; (9)

and for nonpositivevalues of themagnetic quantumnumber
Me� , the Landau levels are infinitely degenerate:

Ee�
T ðMe� � 0; Sze� Þ ¼ ð2Sze� þ 1ÞB

2
: (10)

Hence, for an electron with z-spin projection antiparallel to
the magnetic field and zero (or negative) magnetic quantum
number, Ee�

T ðMe� � 0; Sze� ¼ �1=2Þ ¼ 0, whereas an

electron with z-spin projection parallel to themagnetic field
and zero or negative magnetic quantum number has
Ee�
T ðMe� < 0; Sze� ¼ þ1=2Þ ¼ B.

State 2ð0Þþ.—The state 2ð0Þþ of the system (�, e, e, e) in
a magnetic field of strength B is described by the trial
function (2) with M1 ¼ M2 ¼ M3 ¼ 0 [see Eq. (4)].
Since this state 2ð0Þþ is the ground state for the lithium
atom for weak magnetic fields [11], it is natural to assume
that the system (�, e, e, e) can also develop a stable ground
state with this symmetry in a magnetic field. However, our
results show that the total energy of this state always lies
well above the He ground state 110þ in the whole domain
of magnetic fields studied (see Table I and Fig. 1). Thus,
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this state is metastable, being unstable towards decay
He�½2ð0Þþ� ! Heð110þÞ þ e. The total energy of this
metastable state grows monotonically with an increase of
the magnetic field strength (see Table I and Fig. 1).

State 2ð�1Þþ.—The state 2ð�1Þþ of the system (�, e, e,
e) in a magnetic field is described by the trial function (2)
with M1 ¼ M2 ¼ 0, M3 ¼ �1 [see Eq. (4)]. This state

becomes the lowest energy (ground) state of the lithium
atom for intermediate magnetic fields (see, e.g., [11]). The
state 2ð�1Þþ for He� gets bound for all magnetic fields
studied. Its variational energies are shown at Table I for
1:6 a:u: > B > 0:1 a:u: These energies are always below
the total energies of the state 2ð0Þþ. Qualitatively, the total
energy of the state 2ð�1Þþ displays a minimum at B ’
0:25 a:u: and then grows monotonically with a magnetic
field increase (see Fig. 1). For magnetic fields B *
0:13 a:u: this state turns out to be stable towards decay
He�½2ð�1Þþ� ! Heð110þÞ þ e, since its total energy lies
below the energy of the He ground state 110þ for all
magnetic fields (see Fig. 1). However, for magnetic fields
B * 0:8 a:u: the state 2ð�1Þþ of the system (�, e, e, e)
becomes metastable: (�, e, e, e) decays to ð�; e; eÞ þ e.
Hence, the state 2ð�1Þþ realizes the stable bound state of

the system (�, e, e, e) for magnetic fields 0:8 a:u: * B *
0:13 a:u: Eventually, it becomes the ground state of the
He�-ion for 0:74 a:u: * B * 0:13 a:u: and the first (stable)
excited state for 0:8 a:u: * B * 0:74 a:u: (see below).
State 4ð�3Þþ.—The spin 3=2 state 4ð�3Þþ of the system

(�, e, e, e) in a magnetic field is described by the trial
function (2) with M1 ¼ 0, M2 ¼ �1, M3 ¼ �2 [see
Eq. (4)]. Because of the spin Zeeman contribution, the
energy of this (spin S ¼ 3=2) state decreases rapidly and
monotonically with the magnetic field increase (see Fig. 1
and Table I). Based on pure energy considerations, one can
see that the system (�, e, e, e) in the state 4ð�3Þþ gets
stable for B * 0:7 a:u:
At B ’ 0:7 a:u: the total energy of the state 4ð�3Þþ of

He� coincides with the total energy of the state 110þ of the
He atom. Hence, this state becomes the first excited state of

TABLE I. Total energies in a.u. (Hartrees) for the states 2ð0Þþ, 2ð�1Þþ, and 4ð�3Þþ for the system (�, e, e, e) obtained with trial
function (2). For comparison, the total energies of the He-atom states 110þ, 130þ, and 13ð�1Þþ are included.

He� He� He� He He He

B a.u. E½2ð0Þþ� E½2ð�1Þþ� E½4ð�3Þþ� Eð110þÞ Eð130þÞ E½13ð�1Þþ�
M ¼ 0, Sz¼�1=2 M ¼ �1 Sz¼�1=2 M ¼ �3, Sz¼�3=2 M ¼ 0, Sz¼0 M ¼ 0, Sz¼�1 M¼�1, Sz ¼ �1

0.1 �2:871 �2:892 �2:901 740c �2:258 237c –

0.16 �2:861 �2:905 �2:898 290a �2:296 318a �2:325 189b

0.24 �2:848 �2:904 �2:892 404c �2:339 571c �2:402 393b

0.40 �2:816 �2:899 �2:563 �2:872 874c �2:412 731c �2:540 763b

0.50 �2:794 �2:887 �2:650 �2:855 859a �2:454 347a �2:620 021b

0.8 �2:713 �2:836 �2:891 �2:788 425c �2:573 620c �2:835 619b

1.0 �2:652 �2:794 �3:034 �2:730 373c �2:650 658c �2:965 504b

1.6 �2:658 �3:394 �2:508 81c �2:867 620a �3:308 774b

2.0 �3:606 �2:330 65c �2:999 708a �3:508 911b

5.0 �4:764 �0:575 5c �3:768 199a �4:625 491b

10.0 �5:999 3.064 582a �4:627 450a �5:839 475b

20.0 �7:614 11.267 051a �5:772 448a �7:440 556b

50.0 �10:46 38.076 320a �7:815 256a �10:284 10b

100.0 �13:29 84.918 313a �9:843 074a �13:104 78b

aRef. [16], Becken: 1999.
bRef. [17], Becken: 2000.
cRef. [18], Hesse: 2004.
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FIG. 1 (color online). Total energies (in a.u.) for the states
2ð0Þþ, 2ð�1Þþ and 4ð�3Þþ of the negative ion He� (open
diamonds) in comparison to the energies of the lowest
He-atom states 110þ, 130þ, 13ð�1Þþ (open circles) in a mag-
netic field B.
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the He� ion, while the ground state is 2ð�1Þþ. The total
energy of the state 4ð�3Þþ continues to decrease with the
magnetic field increase. At B ’ 0:74 a:u: it intersects with
the total energy of the state 2ð�1Þþ and becomes the
ground state of the He� ion for larger magnetic fields. In
the domain 0:8 a:u: * B * 0:74 a:u: the He� ion has two
stable states: 4ð�3Þþ as the ground state and 2ð�1Þþ as the
first excited state. At B ’ 0:8 a:u: the latter state gets
metastable decaying to He½13ð�1Þþ� þ e. Thus, for larger
magnetic fields B * 0:8 a:u: the He� ion has a single
stable bound state 4ð�3Þþ.

Lithium.—In order to have an independent estimate of
the accuracy reached, we have made some test calculations
with the trial function (2) for the 20þ, 2ð�1Þþ and for
tightly bound 4ð�3Þþ states of the lithium atom in a
magnetic field. Our results are presented in the Table II
where we include previous results [15] to compare with.

Conclusions.— We have shown that the system (�, e, e,
e) in a magnetic field has at least one stable bound state for
magnetic fields B * 0:13 a:u: This manifests the existence
of the stable He� atomic ion. For values of the magnetic
field in 0:80 * B * 0:70 a:u: the system displays two
stable bound states with the ground state being realized
at first by the state 2ð�1Þþ for magnetic fields up to B ’
0:74 a:u:, followed by the state 4ð�3Þþ as the stable ground
state for B * 0:74 a:u:, while the state 2ð�1Þþ becomes
the excited state. For magnetic fields B * 0:80 a:u: the
negative ion He� has a single stable bound state. All this
shows that the closed shell argument does not work in a
magnetic field.

It is worth noting that the energy of bound-free transi-
tions grows very slowly with the magnetic field increase
from �0:8 eV for �109 G [for the state 2ð�1Þþ] to
�4:9 eV for �1011 G [for the state 4ð�3Þþ]. Hence, it
may be visible in the infrared or optical part of the spectra
of radiation of a cold magnetic white dwarf.
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