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On the basis of lattice simulations using highly improved staggered quarks for twelve-flavor QCD with

several bare fermion masses, we observe a flavor-singlet scalar state lighter than the pion in the correlators

of fermionic interpolating operators. The same state is also investigated using correlators of gluonic

interpolating operators. Combined with our previous study that showed twelve-flavor QCD to be

consistent with being in the conformal window, we infer that the lightness of the scalar state is due to

infrared conformality. This result shed some light on the possibility of a light composite Higgs boson

(‘‘technidilaton’’) in walking technicolor theories.

DOI: 10.1103/PhysRevLett.111.162001 PACS numbers: 12.38.Gc, 11.15.Ha, 12.39.Mk, 12.60.Nz

At the Large Hadron Collider, the existence of a new
bosonic particle of mass mH � 125 GeV [1,2], identified
as the Higgs boson, has recently been confirmed. Although
recent analyses show its consistency with the standard
model Higgs boson, a possibility still allowed from current
data is that this boson is a composite particle, coming from
a new high-energy strongly interacting gauge theory.
A typical example is the walking technicolor theory [3]
(see also Refs. [4–6]), featuring approximate scale invari-
ance and a large anomalous dimension �m � 1. Such a
theory predicts a light composite Higgs ‘‘technidilaton’’
[3], a light scalar particle emerging as a (pseudo-)Nambu-
Goldstone boson of the spontaneously broken approximate
scale symmetry. In this context, we consider one family of
theories, the SU(3) gauge theory with Nf massless Dirac

fermions in the fundamental representation (dubbed large
Nf QCD). LargeNf QCD has been studied by many groups

using different lattice discretizations and techniques in the
search for a candidate of the walking technicolor model
(for reviews, see Refs. [7–9]).

We (LatKMI collaboration) put effort into studying
Nf ¼ 4, 8, 12, 16 QCD using lattice simulations with a

common setup. Studies of the conformal and walking
properties of the Nf ¼ 12 and 8 theories have already

been published [10,11]. Here, we would like to focus on
the Nf ¼ 12 theory that we found [10] to be consistent

with the conformal theory and having unbroken chiral
symmetry. Pressed and inspired by the impressive experi-
mental discovery of the Higgs boson, we present our
results for the mass of the lightest scalar bound state in
the Nf ¼ 12 SU(3) gauge theory using fully nonperturba-

tive lattice Monte Carlo simulations. This measurement of

the nonperturbative scalar spectrum is important because it
gives information on the possible conformal dynamics at
low energy and it serves as a model towards study of the
composite Higgs boson in the walking technicolor model,
if not a candidate as it stands for the walking technicolor
model. As we will explain in the following, the scalar
spectrum is incredibly challenging, and those challenges
are added to the usual problems faced by lattice calcula-
tions near the conformal window [7–9].
In this Letter, we report the results of our calculations,

which show a scalar state lighter than � (Nf-flavor exten-

sion of the pion). A preliminary report on such a light
scalar was given in Ref. [12]. In QCD, the lightest flavor-
singlet scalar state is the f0ð500Þ (�) meson, whose mass
has been reviewed in the latest Particle Data Group [13].
Several studies of the � meson were carried out in lattice
QCD [14–19]. Another example of a flavor-singlet scalar
particle would be the 0þþ glueball, whose existence as a
resonance in QCD has yet to be proven (see Ref. [20] for a
detailed review). Two-pions scattering states could also be
relevant to this channel when combined in an s wave [21].
In QCD, we also expect a mixing between gluonic and
fermionic degrees of freedom, and this could be the case
also for larger Nf values. Note that the candidate for a

composite Higgs or a technidilaton must be predominantly
a fermionic bound state and not a glueball state, since the
gluons do not carry SUð2Þ � Uð1Þ charges. Our contribu-
tion is the first of this kind for a theory that could be
relevant for the physics beyond the standard model.
To study flavor-singlet states using lattice simulations,

the computation of disconnected diagrams is mandatory
for a correct estimate of their mass. This requires
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computationally expensive measurements and high statis-
tics in order to give results with relatively small errors.
Previous studies of the scalar spectrum using fermionic
operators in Nf ¼ 12 QCD either did not include the

computation of disconnected diagrams [22] or were
restricted to an unphysical region of the parameter space
that is not related to the continuum limit physics of the
asymptotically free theory [23].

We discretize the continuum SU(3) gauge theory with
12 degenerate fermions using 3 degenerate staggered fer-
mion species of bare massmf (each coming in four tastes).

In this Letter, all the dimensionful quantities are expressed
in lattice units. At finite lattice spacing, where the simula-
tions take place, the continuum flavor symmetry does not
hold exactly. We use a tree-level Symanzik gauge action
and the highly improved staggered quark [24] action with-
out the tadpole improvement and the mass correction in the
Naik term [25] for the fermions. The flavor symmetry
breaking of this action is highly suppressed in QCD [25],
and we observed that it is almost negligible in ourNf ¼ 12

QCD simulations [10]. At fixed lattice spacing, defined by
the bare coupling constant � ¼ 6=g2 ¼ 4:0, we simulate
three physical volumes L3 with L ¼ 24, 30, 36 and aspect
ratio T=L ¼ 4=3. We investigate the flavor-singlet scalar
spectrum at four different bare quark masses mf ¼ 0:05,

0.06, 0.08, and 0.10. These parameters allow us to check for
finite size systematics and to test hyperscaling [26,27].

We carry out the simulations by using the standard
hybrid Monte Carlo algorithm using MILC code version 7
[28] with some modifications to suit our needs, such as the
Hasenbusch mass preconditioning [29] to reduce the large
computational cost at the smaller mf value. Beside the

excellent flavor (taste) symmetry, another important fea-
ture of our simulations is the large number of Monte Carlo
trajectories from uninterrupted Markov chains obtained
after more than 1000 trajectories for thermalization. For

all sets of parameters explored, we collect between 8000
and 30000 trajectories, and we do measurements every two
trajectories. This is a necessary step to contrast the rapid
degradation of the signal in the flavor-singlet scalar corre-
lators. The simulation parameters and number of trajecto-
ries for each parameter are tabulated in Table I. For the
measurement of the ground-state mass of this channel we
used interpolating operators including both the fermionic
fields and the gauge fields, with the appropriate quantum
numbers. The statistical errors for the fermionic and
gluonic measurements are estimated by a jackknife method
with bin sizes of 200 and 160 trajectories, respectively.
In our fermionic scalar calculation, we employ the local

fermionic bilinear operator

OSðtÞ ¼
X3

i¼1

X

~x

��ið ~x; tÞ�ið ~x; tÞ; (1)

where the index i runs through different staggered fermion
species. The explicit staggered spin-taste structure of
the bilinear operator can be written as ��iðyþ AÞ�
ð1 � 1ÞAB�iðyþ BÞ with y as an origin of the hypercube,
and A, B as vectors in the hypercube. Note that this system
has exact symmetry for exchanging the species. The taste
symmetry breaking, which is to vanish in the continuum
limit, is very small in our simulations. Therefore, a part of
the full flavor symmetry is exact, and the rest is only
broken by a small amount. From OSðtÞ we calculate the
correlator, which is constructed by both the connected CðtÞ
and vacuum-subtracted disconnected DðtÞ correlators,

hOSðtÞOy
S ð0Þi ¼ 3DðtÞ � CðtÞ, where the factor in front

of DðtÞ comes from the number of species. It is noted
that the contribution of DðtÞ with respect to CðtÞ increases
with Nf ¼ no: species� 4.

The operator OS overlaps with the flavor-singlet scalar
state (�) but also with a flavor nonsinglet pseudoscalar

TABLE I. Parameters of lattice simulations for Nf ¼ 12 QCD at fixed � ¼ 4:0. Ncfgs is the
number of saved gauge configurations. The second error ofm� is a systematic error coming from
the fit range. The values of m� are from Ref. [10], but the ones with (*) have been updated. The
error on m�=m� comes only from m�.

L3 � T mf Ncfgs m� m� m�=m�

243 � 32 0.05 11000 0:237ð13Þð0201Þ 0.3273(19)* 0:73ð4Þð10Þ
243 � 32 0.06 14000 0:279ð17Þð0701Þ 0.3646(16)* 0:77ð5Þð20Þ
243 � 32 0.08 15000 0:359ð21Þð0118Þ 0.4459(11) 0:81ð5Þð04Þ
243 � 32 0.10 9000 0:453ð42Þð3708Þ 0.5210(7) 0:87ð8Þð72Þ
303 � 40 0.05 10000 0:275ð13Þð2108Þ 0.3192(14)* 0:86ð4Þð73Þ
303 � 40 0.06 15000 0:329ð15Þð4712Þ 0.3648(9)* 0:90ð4Þð133 Þ
303 � 40 0.08 15000 0:382ð21Þð0316Þ 0.4499(8) 0:85ð5Þð14Þ
303 � 40 0.10 4000 0:431ð51Þð0604Þ 0.5243(7) 0:82ð10Þð11Þ
363 � 48 0.05 5000 0:283ð23Þð0102Þ 0.3204(7)* 0:88ð7Þð01Þ
363 � 48 0.06 6000 0:305ð22Þð2506Þ 0.3636(9)* 0:84ð6Þð72Þ
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state (�SC), which is the staggered parity partner of �;
therefore, in the large-time limit, the correlator above
behaves as

3DðtÞ � CðtÞ ¼ A�ðtÞ þ ð�1ÞtA�
SC
ðtÞ; (2)

where AHðtÞ ¼ AHðe�mHt þ e�mHðT�tÞÞ, and the pseudo-
scalar state has a (�5�4 � �5�4) spin-taste structure but is
species singlet.

Because CðtÞ can be regarded as a flavor nonsinglet
scalar correlator, it should have a contribution from the
lightest nonsinglet scalar state (a0) (e.g., a0ð980Þ in QCD
[13]) and its staggered parity partner (�SC). When t is
large, we can therefore write

�CðtÞ ¼ Aa0ðtÞ þ ð�1ÞtA�SC
ðtÞ; (3)

where both a0 and �SC are species nonsinglet and have the
same taste structure as � and �SC, respectively. The �SC

state is degenerate with (�5 � �5) � and also with �SC

(m�SC
¼ m� ¼ m�

SC
) when the taste symmetry and, thus,

the full flavor symmetry is recovered.
The disconnected correlator DðtÞ, which is essential to

obtain the � mass, can be calculated by inverting the
staggered Dirac operator at each space-time point ð ~x; tÞ.
The computational cost of this inversion is mitigated by
using a stochastic noise method. Moreover, its large fluc-
tuations from the random noise in the method are dealt
with by using a variance reduction method already
employed for the flavor-singlet pseudoscalar [30,31] and
chiral condensate [32] in usual QCD and for the flavor-
singlet scalar meson in Nf ¼ 12 QCD [23]. We employ 64

spacetime random sources for this reduction method. From
Eqs. (2) and (3), the large-time asymptotic form of 3DðtÞ
can be written as

3DðtÞ ¼ A�ðtÞ � Aa0ðtÞ þ ð�1Þt½A�SC
ðtÞ � A�

SC
ðtÞ�: (4)

A typical result for �CðtÞ and 3DðtÞ is shown in Fig. 1. In
the large-time region, 3DðtÞ behaves as a smooth function
of t in contrast to �CðtÞ, which has a clear oscillating

behavior. This means that the taste-symmetry breaking
between A�SC

ðtÞ and A�
SC
ðtÞ in Eq. (4) is small, as expected

from our previous work [10].
In order to minimize A�

SC
ðtÞ in 3DðtÞ � CðtÞ, we adopt a

projection CþðtÞ ¼ 2CðtÞ þ Cðtþ 1Þ þ Cðt� 1Þ, at even
t. Figure 2 shows that the effective mass of 3DþðtÞ � CþðtÞ
at large t is smaller than m�, whereas the error is large. As
an alternative method, we also employ DðtÞ to extract m�,
and its effective mass is also shown in the figure. The
effective mass plateau of DðtÞ is consistent with the one
of 3DþðtÞ � CþðtÞ in the large-time region. Furthermore,
the plot clarifies the importance of usingDðtÞ to extractm�

because it performs better in identifying the lightest scalar
state, even at small temporal separations. This might be
caused by a reasonable cancellation among contributions
from excited scalar states and the a0 state inDðtÞ. It should
be noted that because of the smallm� value the exponential
damping of DðtÞ is slow, which helps in preventing the
rapid degradation of the signal-to-noise ratio.
We fit DðtÞ between t ¼ 4 and t ¼ 8, assuming a single

light state propagating in this region, to obtain m� for all
the parameters. A systematic error coming from the fitting
range choice is estimated by the difference of central
values obtained with several fit ranges. The results of m�

and m� are reported in Table I. We find that m� <m� <

ma0 for all the investigated fermion masses. The difference

of m� and m� is more than 1 standard deviation when the
statistic and systematic errors are combined in quadrature,
except for mf ¼ 0:06 on L ¼ 30, where there is a sizable

systematic error.
As mentioned before, bound states in the 0þþ channel

for a non-Abelian strongly interacting gauge theory can
contain gluonic degrees of freedom as well as fermionic
ones. This gluonic content has been studied already in the
SU(2) gauge theory with two adjoint fermions [33]. The
method to measure glueball masses on the lattice employs

0 4 8 12 16 20 24 28 32
t

0.0001
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1×10-6

FIG. 1 (color online). Connected �CðtÞ and disconnected
3DðtÞ correlators for L ¼ 24 and mf ¼ 0:06.
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FIG. 2 (color online). Effective scalar mass m� from correla-
tors in Eq. (2), with the projection explained in the text, and in
Eq. (4) for L ¼ 24 and mf ¼ 0:06. The dashed and solid lines

highlight the fit result for m� with statistical error band and m�,
respectively.
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a large number of different interpolating operators built
from gauge-invariant combinations of gauge links in such a
way that a robust basis for a variational ansatz can be
created [see for example Refs. [34–37]]. We build gauge-
invariant and zero-momentum interpolating operators
O�

GðtÞ with scalar rotational quantum numbers. By using

differently shaped spatial Wilson loops, we construct 32
different basis operators for the scalar glueball. Each
of these operators is smeared at several levels (five or
six), and we obtain a large variational basis O�

GðtÞ,
� ¼ 1; . . . ; 160ð192Þ.

The variational ansatz proves to be successful in extract-
ing a signal for the ground state from vacuum subtracted
cross-correlation matrices of the form

C��ðtÞ ¼ hO�
GðtÞO�

Gð0Þi � hO�
GihO�

Gi: (5)

We analyze the correlator after a projection on the eigen-
state corresponding to the smallest mass. Figure 3 shows
the effective mass of such a state for mf ¼ 0:06 on the

L ¼ 24 volume, in comparison with the one obtained from
the fermion bilinear (which has already been shown in
Fig. 2). Remarkably, the asymptotic plateaus from both
operators agree, though the statistical noise is larger in the
gluonic case. The agreement indicates that the gluonic
operator has an overlap with the light scalar state that
couples to the fermion bilinear. On the L ¼ 24 volume,
we estimate the scalar mass mG by fitting the large-time
behavior (t ¼ 6–8) of the correlator, and we obtain mG ¼
0:242ð68Þ at mf ¼ 0:05, mG ¼ 0:246ð79Þ at mf ¼ 0:06,

and mG ¼ 0:28ð12Þ at mf ¼ 0:08. These mG are all lighter

than m� by more than 1 standard deviation, whereas the
statistical errors are large.

Figure 4 presents the flavor-singlet scalar spectrum as a
function ofmf. All themG values are consistent withm� at

each parameter. For m� on the largest two volumes at each

mf value, finite size effects are negligible in our statistics.

For a check of consistency with the hyperscaling ofm�, we
fit m� on the largest volume data at each mf using the

hyperscaling form m� ¼ CðmfÞ1=1þ� with a fixed � ¼
0:414 estimated from m� [10], which gives a reasonable
value of �2=DOF ¼ 0:12. The fit is shown in Fig. 4. We
remind here that the fitted data points havem�L > 11:5, as
can be checked from Table. I. We also estimate the ratio
m�=m� at each parameter and report it in Table I. All the
ratios are smaller than unity by more than 1 standard
deviation including the systematic error, except the one
at mf ¼ 0:06 on L ¼ 30, as previously explained. A

constant fit with the largest volume data at each mf gives

0.86(3). These results are consistent with the theory being
infrared conformal. Moreover, they do not show an abnor-
mal mf dependence of m� similar to the one observed in

Ref. [23], by which an effect of an unphysical phase
boundary would have been suspected.
To summarize, we performed the first study of the scalar

flavor-singlet state in Nf ¼ 12 QCD using fermionic and

gluonic interpolating operators. The most striking feature
of the measured scalar spectrum is the appearance of a state
lighter than the � state, as it is shown in Fig. 4. Such a state
appears in both gluonic and fermionic correlators at small
bare fermion mass. Clear signals in our simulations were
possible thanks to the following salient features: (1) Small
taste-symmetry breaking, (2) efficient noise-reduction
methods, (3) large configuration ensembles, and (4) slow
damping of DðtÞ because of a small m� value.
We regard the light scalar state observed for Nf ¼ 12 in

this study as a reflection of the dilatonic nature of the
conformal dynamics, since otherwise the p-wave bound
state (scalar) is expected to be heavier than the s-wave one
(pseudoscalar). Thus, it is a promising signal for a walking
theory, where a similar conformal dynamics in a wide
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FIG. 3 (color online). Fermionic m� and gluonic mG effective
masses [respectively from correlators in Eqs. (4) and (5)] for
L ¼ 24 and mf ¼ 0:06. The fitted masses are highlighted by

dashed and dotted-dashed lines for the gluonic correlators and
dotted lines for the fermionic one. The systematics effects on the
gluonic mass are not relevant given the larger statistical error.
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FIG. 4 (color online). The mass of the flavor-singlet scalar
meson � (see Table I) compared to the mass of the pseudoscalar
� state and the mass mG from gluonic operators. Errors are
statistical, and systematics are added in quadrature. The hyper-
scaling curve is described in the text. The triangle and filled
square symbols are slightly shifted for clarity.
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infrared region should be operative in the chiral limit to
form a dilatonic state with mass of OðF�Þ, in such a way
that the tiny spontaneous-breaking-scale F� plays the role
of mf (cf. Ref. [11]).

While further investigation of the scalar state in Nf ¼
12 QCD, such as a possible lattice spacing dependence, is
important, the most pressing future direction is to look at
more viable candidates for walking technicolor models.
For example, it will be interesting to investigate the scalar
spectrum of the Nf ¼ 8 SU(3) theory, which was shown to

be a good candidate for the walking technicolor model
[11], where the scalar state could be identified with the
technidilaton, a pseudo-Nambu-Goldstone boson coming
from the dynamical breaking of conformal symmetry.
There actually exists an indication of such a light scalar
in Nf ¼ 8 QCD [38].

Numerical simulation has been carried out on the super-
computer system ’ at KMI in Nagoya University and
the computer facilities of the Research Institute for
Information Technology in Kyushu University. This work
is supported by the JSPS Grants-in-Aid for Scientific
Research (S) No. 22224003, (C) No. 23540300 (K.Y.),
for Young Scientists (B) No. 25800139 (H.O.) and
No. 25800138 (T.Y.), and also by a Grant-in-Aid of the
Japanese Ministry for Scientific Research on Innovative
Areas No. 3105708 (T. Y.). E. R. was supported by a SUPA
Prize Studentship and a FY2012 JSPS Postdoctoral
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would like to thank Luigi Del Debbio and Julius Kuti for
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