
Constraints on Conformal Field Theories in Diverse Dimensions from the Bootstrap Mechanism

Ferdinando Gliozzi

School of Computing and Mathematics and Centre for Mathematical Science, Plymouth University,
Plymouth PL4 8AA, United Kingdom

INFN, Sezione di Torino, via Pietro Giuria, 1, I-10125 Torino, Italy
(Received 24 July 2013; published 16 October 2013)

Recently an efficient numerical method has been developed to implement the constraints of crossing

symmetry and unitarity on the operator dimensions and operator product expansion coefficients of

conformal field theories in diverse space-time dimensions. It appears that the calculations can be done

only for theories lying at the boundary of the allowed parameter space. Here it is pointed out that a similar

method can be applied to a larger class of conformal field theories, whether unitary or not, and no free

parameter remains, provided we know the fusion algebra of the low lying primary operators. As an

example we calculate using first principles, with no phenomenological input, the lowest scaling

dimensions of the local operators associated with the Yang-Lee edge singularity in three and four space

dimensions. The edge exponents compare favorably with the latest numerical estimates. A consistency

check of this approach on the 3D critical Ising model is also made.
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One of the manifold expressions of the bootstrap dream
is the conformal bootstrap, i.e., the idea that the crossing
symmetry of the four-point functions of a conformal field
theory (CFT) is so constraining [1–3] that, in some cases, it
could uniquely fix the spectrum of the allowed scaling
dimensions of the theory. In the case of two-dimensional
rational CFTs, i.e., those with a finite number of Virasoro
primary fields, there is an almost perfect implementation of
this idea encoded in the Vafa equations [4]. These are
Diophantine equations built by combining the crossing
symmetry with the surprising modular properties of the
fusion algebra [5]. As a result, the spectrum of Virasoro
primary fields turns out to be discrete and all the scaling
dimensions are determined modulo an integer.

The aim of this Letter is to reformulate the numerical
method recently developed to implement the constraints
of crossing symmetry in CFTs in diverse space-time
dimensions [6–8] so that it resembles, to a certain degree,
Vafa equations, provided rational CFTs in two dimensions
are replaced with truncable CFTs in D dimensions, i.e.,
theories whose four-point functions can be well approxi-
mated by a finite sum of conformal blocks (in a way to be
specified later); the Diophantine equations are replaced by
transcendental ones whose solutions yield approximate
values of the scaling dimensions of the primary operators
of the theory. The level of the approximation is controlled
by the number of conformal blocks considered.

As in Vafa equations, unitarity plays no role in this
reformulation. While unitarity should be invoked for a
sensible quantum field theory, many interesting critical
systems do not correspond to unitary theories; thus, it is
important to extend the method to these systems.

The starting point of this kind of analysis is a suitable
parameterization of the four-point function of a scalar field

’ðxÞ in aD-dimensional CFT. The SOðDþ1;1Þ conformal
invariance makes it possible to write

h’ðx1Þ’ðx2Þ’ðx3Þ’ðx4Þi ¼ gðu; vÞ
jx12j2�’ jx34j2�’

; (1)

where�’ is the scaling dimension of ’, x2ij is the square of

the distance between xi and xj, gðu; vÞ is an arbitrary

function of the cross ratios u ¼ x212x
2
34=x

2
13x

2
24 and v ¼

x214x
2
23=x

2
13x

2
24. The function g can be expanded in terms

of the conformal blocks G�;Lðu; vÞ, i.e., the eigenfunctions
of the Casimir operator of SOðDþ 1; 1Þ:

gðu; vÞ ¼ 1þX
�;L

p�;LG�;Lðu; vÞ: (2)

The coefficients p�;L determine, up to a sign, the operator

product expansion (OPE) of ’ðx1Þ’ðx2Þ. Namely, if
p�;L � 0, there is in this OPE a primary operator O of

scaling dimension � and spin L with an OPE coefficient
�’’O with �2

’’O ¼ p�;L. In the following it is not neces-

sary to know the detailed form of the OPE but simply its
fusion rule that, in the case at hand, we write as

½�’� � ½�’� ¼
X
i

Ni½�i; Li�; (3)

where the integer Ni denotes the number of different
primary operators of quantum numbers �i and Li and we
set ½�� � ½�; 0�.
The lhs of (1) is invariant under any permutation of the

four coordinates xi, while the rhs is not, unless gðu; vÞ
fulfils two functional equations which express the crossing
symmetry constraints. The x1 $ x2 interchange gives
gðu; vÞ ¼ gðu=v; 1=vÞ which is followed only by the con-
formal blocks of even spin in (2), so only they contribute
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to (2). The x1 $ x3 interchange yields a functional equa-
tion that we write in the form used in [6]

X
�;L

p�;L
v�’G�;Lðu; vÞ � u�’G�;Lðv; uÞ

u�’ � v�’
¼ 1: (4)

Following [6] we put u ¼ z�z and v ¼ ð1� zÞð1� �zÞ.
In Euclidean space �z is the complex conjugate of z while
in Minkowski space they can be treated as independent real
variables. The conformal blocks are smooth functions in
the region 0 � z; �z < 1. The central idea of [6] is to Taylor
expand (4) about the symmetric point z ¼ �z ¼ 1=2
and transform the functional equation into an infinite set
of linear equations in the infinite unknowns p�;L, made

with the derivatives of (4) of any order. To be more
specific, following [7] we make the change of variables

z ¼ ðaþ ffiffiffi
b

p Þ=2, �z ¼ ða� ffiffiffi
b

p Þ=2 and Taylor expand
around a ¼ 1 and b ¼ 0. It is easy to see that this expan-
sion will contain only even powers of (a� 1) and integer
powers of b. The crossing symmetry constraint (4) can then
be rewritten as one inhomogeneous equationX

�;L

p�;Lf
ð0;0Þ
�’;�L

¼ 1; (5)

and an infinite number of homogeneous equationsX
�;L

p�;Lf
ð2m;nÞ
�’;�L

¼ 0; ðm; n 2 N; mþ n � 0Þ; (6)

with

fðm;nÞ
�;� ¼

�
@ma @

n
b

v�G�ðu; vÞ � u�G�ðv; uÞ
u� � v�

�
a;b¼1;0

: (7)

At this point our analysis differs from that of [6]. Instead
of looking for a model-independent unitary bound as a
consequence of these equations, we apply the above con-
siderations to some specific CFT, like, for instance, a
critical ’4 theory or a massless free field theory, where
we assume the fusion algebra (3) is known, at least for the
low-lying primary operators.

We say that this theory is truncable at level N if
the partial sum of the first N conformal blocks of the
infinite series (2) gives an exact solution of a set of
M � N equations of the homogeneous system (6). Now a
system of M linear homogeneous equations with N
unknowns admits a nonidentically vanishing solution
only if all the minors of order N are vanishing [9]. This
gives rise to � � ðMNÞ independent relations among the

scaling dimensions f�gN � ½�’;�;�
0; . . .� of the first

N þ 1 primary operators

diðf�gNÞ � det½fð2mi;niÞ
�’;�2f�gN � ¼ 0; ði ¼ 1; 2 . . .�Þ; (8)

where mi, ni indicate the rows belonging to the minor i.
At this perturbative order these equations encode the

whole amount of information extracted from crossing
symmetry, in the sense that the first M homogeneous

equations are exactly solved if and only if all these minors
are vanishing (the inhomogeneous Eq. (5) is simply a
normalization condition). What can they tell us about the
physical properties of this truncable CFT? The scaling
dimension of the energy-momentum tensor is fixed to be
�T ¼ D, while we assume initially that the other N �’s are
free parameters. They are progressively constrained by
increasing the number � of equations. The maximum
allowed value of � in a generic case is � ¼ N, of course,
when the system (8) has a discrete number of solutions
f�agN (a ¼ 1; 2; . . . ), or even no solution. The latter
possibility is expected when one blindly includes in the
fusion rule terms which should not be there. On the con-
trary, if the CFT we are studying truly exists, and we can
reasonably infer its fusion algebra, we expect that a � 0
and that the exact spectrum of the first N þ 1 primary
operators f�?gN is close to one of those discrete solutions
(we shall illustrate it with some examples).
Choosing a (partially) different set of M homogeneous

equations, the discrete solutions f�agN slightly shift. The
extent of this displacement gives a measure of the error
made in truncating the expansion (2) atN conformal blocks.
It is also easy to see that adding a new term in the conformal
block expansion does not spoil the discrete solution f�agN ,
but simply induces a small correction on it (we leave the
pleasure of proving it to the interested reader). Thus, if a
CFT is truncable at level N, it is also truncable in general
at level N þ 1 and so on. This fact leads us to conjecture
that the truncable CFTs could coincide with those with a
finite number of primary operators of conformal dimension
�<K for any positive K. This subclass of CFTs contains
many physically interesting examples.
As a first application of the present method let us

consider a massless free field theory in D space-time
dimensions. In this case the fusion rule is

½�’� � ½�’� ¼ 1þ ½�’2� þ ½D; 2� þ ½�’2 þ 4; 4� þ . . . ;

(9)

where �’2 ¼ 2�’ ¼ D� 2, but we treat �’2 and �’ as

free parameters and truncate (9) at L ¼ 4, resulting in three
unknowns p�;L. The vanishing of each 3� 3 minor of the

homogeneous system gives a relation dið�’;�’2Þ ¼ 0

between these two parameters. Figure 1 shows four such
relations in the D ¼ 3 case. We see that their mutual
intersections accumulate around the expected exact value.
Adding now the inhomogeneous equation (5) we obtain the
OPE coefficients. They accumulate near the exact values
given, at D ¼ 3, by the conformal block expansion

gðu; vÞ � 1 � ffiffiffi
u

p þ
ffiffiffi
u

v

r
¼ 2G1;0 þ 1

4
G3;2 þ 1

64
G5;4 þ . . .

(10)

(We used, for the rhs, the normalizations of [7]).
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Next, we switch on the interaction by adding to the
action a ’3 term with imaginary coupling. Precisely, we
put

S ¼
Z

dDx

�
1

2
ð@’Þ2 þ iðh� hcÞ’þ ig’3

�
: (11)

This nonunitary theory is known to describe in the infrared
the universality class of the Yang-Lee edge singularity
[10]. Such a singularity occurs in any ferromagnetic
D-dimensional Ising model above its critical temperature
T > Tc. The zeros of the partition function in the complex
plane of the magnetic field h are located on the imaginary
ih axis above a critical value ihcðTÞ. In the thermodynamic
limit the density of these zeros behaves near hc like
ðh� hcÞ�, where the critical exponent � is related to the
scaling dimension of the field ’ by [10]

� ¼ �’

D��’

: (12)

This edge exponent is exactly known inD ¼ 2 andD ¼ 6.
Our purpose now is to evaluate it in D ¼ 3 and D ¼ 4
using the present method and to compare it with most
recent numerical results. Meanwhile we also check the
method inD ¼ 2, where the complete spectrum of primary
operators is known as well as the OPE coefficients [11].

The ’3 interaction tells us that the upper critical dimen-
sionality of this model is Du ¼ 6, above which the classi-
cal mean-field value � ¼ 1=2 applies. In 6� � there are
apparently two relevant operators, ’ and ’2; however the
latter is, in fact, a redundant operator, as at the nontrivial

’3 fixed point it is proportional to @2’ by the equation of
motion. Thus ’2 and its derivatives become descendant
operators of the only relevant primary operator ’ of this
universality class. Actually, this is the only difference
between the operator content of the Gaussian fixed point
of the free-field theory and the Yang-Lee edge universality
class, as long as the approximate renormalization group
analysis applies. As a result, the fusion rule (9) becomes
even simpler

½�’� � ½�’� ¼ 1þ ½�’� þ ½D; 2� þ ½�4; 4� þ . . . (13)

It characterizes the universality class of the Yang-Lee edge
singularity in any space dimension.
Before inserting such a fusion rule in Eqs. (8), we try

to simplify the notation a bit. Each equation of the
homogeneous system (6) is labeled by the pair of integers
(m, n). We enumerate these equations using the following
arbitrary dictionary

1; 2; 3; 4; 5; 6; . . . $ ð1; 0Þð2; 0Þð0; 1Þð0; 2Þð1; 1Þð0; 3Þ . . .
(14)

Let us begin with the D ¼ 2 case. A 2� 2 minor of the
truncation of (13) at N ¼ 2 can be written explicitly in this
case as

d12ð�’Þ ¼ det
@2aG�’;0 @2aG2;2

@4aG�’;0 @4aG2;2

 !
: (15)

It has a zero at �’ ’ �0:422. Similarly d13ð�’Þ vanishes
at �’ ’ �0:362. The exact value is at �’ ¼ �ð2=5Þ.
In order to obtain more accurate results, we have to

add the next term of the fusion rule (13), namely the spin
4 operator ½�4; 4�, which depends on the new ‘‘free’’
parameter �4.
In view of the fact that in the fusion rule of any scalar

operator in D ¼ 2 the energy momentum tensor T þ �T is
always accompanied by the scalar T �T associated to [4, 0],
we add the latter without enlarging the number of free
parameters. The intersection of d1234ð�’;�4Þ ¼ 0 with

d1245ð�’;�4Þ ¼ 0 gives �’ ’ �0:393 and �4 ’ 3:666.

The exact value of the latter is �4 ¼ 18=5. Solving now
the inhomogeneous system we find p�’

’ �3:665 to be

compared with the exact result [11]

p�’
¼ ��ð65Þ2�ð15Þ�ð25Þ

�ð45Þ3�ð35Þ
’ �3:65312: (16)

We can extract from p2;2 the estimate c ’ �4:53 of the

central charge, while its exact value is c ¼ �ð22=5Þ.
The last step is now to put D ¼ 3 in our formulae.

Entering in the three-dimensional world we leave the
golden eden of exactly solvable models and can resort
solely to the internal consistency of the approach. Using
the fusion rule truncated at the spin 4 operator we have
only two free parameters. The intersection of the vanishing
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FIG. 1 (color online). Each curve represents the locus of
vanishing of a 3� 3 minor of the homogeneous system (6) in
the �’, �’2 plane in the free scalar massless theory in D ¼ 3

dimensions.
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loci of the 3� 3minors d123ð�’;�4Þ and d234ð�’;�4Þ and
the subsequent solution of the inhomogeneous system
yield

�’ ’ 0:213; �4 ’ 4:49; p�’
’�3:91; p3;2 ’ 0:006

(17)

where p�’
¼ �2

’’’ and p3;2 ¼ �2
’’T . Internal consistency

requires that all the 3� 3 minors made with the same
equations (i.e., with the same indices i ¼ 1, 2, 3, 4) should
converge to zero or to small values when approaching this
solution. This is illustrated in Fig. 2.

Inserting this value of �’ in (12) we obtain � ’ 0:076,

to be compared with the very accurate estimate [12]
� ¼ 0:077ð2Þ, based on very long series expansions of
dimer density in powers of the activity in a cubic lattice.
Similarly, with no more effort, we can apply the same
analysis to the Yang Lee edge singularity in four space
dimensions, obtaining

�’ ’ 0:823; �4 ’ 5:71; p�’
’�2:86; p4;2 ’ 0:40

(18)

and consequently � ’ 0:259, to be compared with
� ¼ 0:258ð5Þ of [12]. Figure 3 shows this solution as the
common intersection of the zero loci of 3� 3 minors. In
principle, the other physical parameters listed in (17) and
(18) could be checked with an � ¼ 6�D expansion.

Clearly the present method may be successfully applied
to other models. Note, however, that in the fusion rules
there are generally many more unknown scaling dimen-
sions to be accounted for, which should require much
larger determinants and, hence, much larger orders of
vanishing derivatives.

For instance, in the 3D critical Ising model there are two
more scalar primary operators of scaling dimension
smaller than that of the spin 4 operator, one associated to
’4 with �’4 ¼ 3:84ð4Þ, the other associated to ’6 with

�’6 ¼ 4:67ð11Þ (�4 ¼ 5:0208ð12Þ in this model). A con-

sistency check of the present method is to insert these

values in the 5� 5 minor associated to the first five homo-
geneous equations as well as to the primary operators
appearing in the fusion of ½’� � ½’�, namely ½’2�, ½’4�,
½’6�, ½3; 2�, ½�4; 4�. Treating �’ and �’2 as free parame-

ters, the vanishing of this determinant yields the constraint
Fð�’;�’2Þ ¼ 0. This very constraint may be used to

obtain a separate estimate of�’ and�’2 , without resorting

to higher derivatives. The key observation is that at this
truncation level the fusion rule of ½’� � ½’� coincides
with that of ½’2� � ½’2�; therefore, in the latter case the
constraint becomes Fð�’2 ;�’2Þ ¼ 0, which has a discrete

number of solutions. One is at �’2 ’ 1:447. Inserting

this value in the former constraint yields �’ ’ 0:518.

The agreement with the most precise estimates [13,14],
�’ ¼ 0:5182ð2Þ and�’2 ¼ 1:4130ð4Þ, is even too good. In
order to have reliable results one should check their stabil-
ity against the insertion of new operators. More informa-
tion is needed on primary operators of higher scaling
dimensions. Perhaps the recent progress on the knowledge
of the scaling properties of higher spin operators [15] could
be very useful for this purpose.
In conclusion, we have reformulated the recently devel-

oped method of implementing the conformal bootstrap in
diverse dimensions so that it can be applied to a larger class
of conformal field theories. Its application to the Yang-Lee
edge singularity in three and four space dimensions as well
as to the 3D critical Ising model, gives rather good results
as compared to the best numerical methods.
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some minors in the case of Yang-Lee edge singularity in four
space dimensions.
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