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Time evolution of a black hole lattice toy model universe is simulated. The vacuum Einstein equations

in a cubic box with a black hole at the origin are numerically solved with periodic boundary conditions on

all pairs of faces opposite to each other. Defining effective scale factors by using the area of a surface and

the length of an edge of the cubic box, we compare them with that in the Einstein–de Sitter universe. It is

found that the behavior of the effective scale factors is well approximated by that in the Einstein–de Sitter

universe. In our model, if the box size is sufficiently larger than the horizon radius, local inhomogeneities

do not significantly affect the global expansion law of the Universe even though the inhomogeneity is

extremely nonlinear.
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The effect of local inhomogeneity on the global expan-
sion of the Universe has drawn much attention as one of
fundamental issues in relativistic cosmology for many
years. One remarkable work was done by Lindquist and
Wheeler in 1957 [1]. In this work, they investigated the
so-called ‘‘black hole lattice universe’’composed ofN cells
(N ¼ 5, 8, 16, 24, 120, and 600) on the three sphere, each
of which has a black hole at the center. Although the lattice
universe is not an exact solution, with help from an intui-
tive idea, it is shown that the radius of the three dimen-
sional sphere at maximum expansion asymptotes to that of
the homogeneous and isotropic dust dominated the closed
universe for a large value of N.

Recently, similar inhomogeneous universe models to the
black hole lattice universe models have been investigated
by using analytical or numerical techniques [2–8]. In this
Letter, we numerically construct an expanding inhomoge-
neous universe model which is composed of regularly
aligned black holes with an identical massM, and compare
the cosmic expansion rate of this inhomogeneous universe
model with that of the homogeneous and isotropic uni-
verse. Hereafter, we call this inhomogeneous universe
model the ‘‘black hole universe.’’

In this Letter, we use the geometrized units in which the
speed of light and Newton’s gravitational constant are one,
respectively. The Greek indices represent spacetime com-
ponents, whereas the small Latin indices represent spatial
components.

The way to construct the initial data of the black hole
universe is described in Ref. [7]. We briefly summarize it.
We adopt the Cartesian coordinate system x ¼ ðx1; x2; x3Þ
and focus on a cubic region �L � xi � L (i ¼ 1, 2, 3)

with a nonrotating black hole at the origin. We call the
faces of this cubic box the boundary in this Letter. Because
of the discrete symmetry, using conventional decomposi-
tion of the Einstein equations, we can reduce the constraint
equations to three coupled Poisson equations with reflec-
tion boundary condition in the region 0 � xi � L. One of
the equations is the Hamiltonian constraint equation for the
conformal factor and the others are momentum constraint
equations for longitudinal parts of the extrinsic curvature.
To solve the equations, we need to fix the functional form
of the trace part of the extrinsic curvatureK. By the volume
integral of the Hamiltonian constraint equation, we get an
integrability condition which implies that there must be a
domain with nonvanishing K. Since it is the simplest and
the most convenient for our purpose to select K vanishing
in the neighborhood of the origin, we adopt the following
functional form of K:

KðxÞ ¼ �3HeffWðRÞ; (1)

where Heff is a positive constant which corresponds to the
effective Hubble parameter, R :¼ jxj, and

WðRÞ ¼
8><
>:
0 for 0�R� ‘

��36½ðR��� ‘Þ6��6�6 for ‘�R� ‘þ�

1 for ‘þ��R

;

(2)

with ‘ and � being constants which satisfy ‘ < ‘þ
�< L. An appropriate extraction of 1=R divergence of
the conformal factor allows us to solve the coupled Poisson
equations numerically. It should be noted that the value of
Heff must be determined so that the integrability condition

PRL 111, 161102 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

18 OCTOBER 2013

0031-9007=13=111(16)=161102(4) 161102-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.111.161102


is satisfied, that is, we cannot freely choose the parameter
Heff but must appropriately fix the value during the
numerical iteration. Since the results are not significantly
dependent on ‘ and � (we set ‘ ¼ 0:1M and � ¼ 1:8M in
our calculation) the physical dimensionless parameter
which characterizes the initial data is only L=M. In
Ref. [7], we could get convergence for 1:4M � L �
10M. We adopt the case L ¼ 2M as the initial data for
the evolution in this Letter.

The numerical time evolution is followed by the COSMOS

code which is an Einstein equation solver written in C++ by
means of the BSSN formalism [9,10]. The algorithm is
based on the SACRA code [11]. The 4th order finite differ-
encing in space with unigrid and 4th-order time integration
with a Runge-Kutta method in Cartesian coordinates are
adopted in the COSMOS code. An apparent horizon solver
based on Ref. [12] is implemented.

We write the line element of the spacetime as

ds2 ¼ �N2dt2 þ �ijðdxi þ �idtÞðdxj þ �jdtÞ: (3)

In order to determine the time slicing, we adopt the
following condition:

�
@

@t
� �i @

@xi

�
N ¼ �2NðK � KcÞ; (4)

where Kc is the trace of the extrinsic curvature at the vertex
xi ¼ Lði ¼ 1; 2; 3Þ at each time step. As for the spatial
coordinates, we adopt the so-called hyperbolic gamma
driver [13] with specific values of parameters given by

@�i

@t
¼ Bi; (5)

@Bi

@t
¼ @~�i

@t
� 3

4M
Bi; (6)

where ~�i :¼ �@j ~�
ij with ~�ij :¼ e�4c�ij and c :¼

ð1=12Þ lnðdet�Þ.
We define the cosmic expansion rate by using boundary

variables on the geodesic slices [14] which is occasionally
called constant proper time slices. In order to know the
geometry of the boundary on the geodesic slices, we need
to solve timelike geodesic equations on the boundary.
3þ 1 decomposition of geodesic equations is clearly
described in Ref. [15]. Using the unit vector n� :¼
�N@�t normal to the time slices, we can decompose

the unit tangent vector field of the timelike geodesic
congruence as follows:

u� ¼ Eðn� þ V�Þ; (7)

where V�n� ¼ 0. Let us represent a timelike geodesic by

x� ¼ x�ðtÞ, where t ¼ x0. Then, we have [15]

dE

dt
¼ EViðNKijV

j � @iNÞ; (8)

dVi

dt
¼ NVj½Við@j lnN � KjkV

kÞ þ 2Ki
j � Vk�i

jk�
� �ij@jN � Vj@j�

i; (9)

where �i
jk is the Christoffel symbol for the spatial metric

�ij, and

d

dt
:¼ N

E
u�

@

@x�
¼ N

�
n�

@

@x�
þ Vi @

@xi

�

¼ @

@t
þ ð��i þ NViÞ @

@xi
: (10)

The relation between the proper time � and the time
coordinate is given by

d�

dt
¼ 1=u0 ¼ N

E
: (11)

The initial conditions for geodesic equations are given by
E ¼ 1, Vi ¼ 0, and � ¼ 0 in our simulation. It is sufficient
for our purpose to consider the geodesics with x3 ¼ L at
� ¼ 0. By the symmetry of this system, x3 ¼ L and
V3 ¼ 0 always hold. Solving Eqs. (8), (9), and (11), we
obtain the proper time in the form of � ¼ fðt; xAÞ
(A ¼ 1, 2). Then, the line element dl2 of the boundary
x3 ¼ L on a hypersurface with a constant �, i. e., a geode-
sic slice is given by

dl2¼
�
ð�N2þ�C�CÞ@Af@Bfð@tfÞ2

þ�AB�2�A@Bf

@tf

�
dxAdxB:

(12)

We numerically obtain the proper area A of the surface
(� L � xA � L, x3 ¼ L) and the proper length L of the
edge (� L � x1 � L, x2 ¼ L, x3 ¼ L) by using this
induced metric. Then, we define the effective scale factors
as functions of the proper time as follows:

aLð�Þ :¼ Lð�Þ; aAð�Þ :¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Að�Þ

p
: (13)

Since the coarse-grained black hole universe can be
regarded as a homogeneous and isotropic universe model
with vanishing spatial curvature by its construction, we
compare the expansion rate of the black hole universe with
that in the Einstein–de Sitter (EdS) universe. To compare
the effective scale factors defined by Eq. (13) with that
in the EdS universe, we define a fiducial scale factor.
The general form of the scale factor in the EdS universe
is given by

aEdSð�Þ :¼ afð�þ �fÞ2=3: (14)

Then we determine two parameters af and �f by the least-
square fitting of this function with the numerical data in a
reliable region of �. Using this expression, the effective
Hubble parameter is given by

HEdSð�Þ ¼ 2

3

1

�þ �f
: (15)
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We performed the numerical simulation with four
different resolutions: R1, R2, R3, and R4. The interval of
coordinate grids for each numerical run is given by
�x=M ’ 4=59, 4=91, 4=123 and 4=155 for R1, R2, R3,
and R4, respectively.

Before showing the results of effective scale factors, we
note the resolution of the apparent horizon and constraint
violation. At the initial moment, an almost spherical
apparent horizon with the coordinate radius R ’ 0:5M
exists. As shown in Fig. 1, the coordinate radius of the
apparent horizon decreases as it evolves.

At some time, our apparent horizon finder fails to find
out the horizon because of the limitation of the resolution.
For R4, it happens at t� 25M. While the horizon can be
found, variation of the horizon area is smaller than 0.1%,
which is the same order as the typical fraction of violation
of the Hamiltonian constraint as is shown below. This
implies that the horizon area is constant in time within
our numerical precision.

As is shown in Fig. 2, after the failure in the apparent
horizon search, the violation of the Hamiltonian constraint
propagates outward, and the reliable region becomes nar-
rower as time goes on. However, the numerical computa-
tion does not crash and we can proceed with the
calculation. Even after the size of the apparent horizon

becomes too small to be resolved, the spacetime in the
vicinity of the boundary is simulated with sufficient accu-
racy, since the present numerical results on the behaviors of
the effective scale factors pass the convergence test. In
order to show the convergence clearly, we depict the
root-mean-square value of errors in the Hamiltonian con-
straint at grid points on the boundary in Fig. 3. It is seen
from this figure that the error reduces with higher spatial
resolution. In the beginning of the simulation, we find
accurate second order convergence that the error scales
to �x2. This is because the initial data sets are given by
the 2nd order successive-over-relaxation method for each
resolution [7], although the evolution code has the 4th
order accuracy.
In Fig. 4, we show the effective scale factors as functions

of the proper time. The fiducial scale factor aEdSð�Þ deter-
mined by fitting with R4 is also shown. The fitting is done
in the region 20M< �< 60M, in which the results of all
runs almost coincide with each other. The given value of
parameters are af ’ 2:64M and �f ’ �3:25M. We also
show the deviation of the effective scale factors from
aEdSð�Þ in Fig. 5. It can be found from Figs. 4 and 5 that
the behavior of the effective scale factors for R4 is well
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FIG. 1 (color online). Apparent horizon for each time step. 1×10–005

 0.0001

 0.001

 0.01

 0.1

 1

 0  20  40  60  80  100  120  140  160

R
.M

.S
 o

f e
rr

or
 in

 H
m

ilt
on

ia
n 

co
ns

tr
ai

nt

coordinate time [M]

R1
R2
R3
R4

FIG. 3 (color online). Root-mean square of the errors in the
Hamiltonian constraint at grid points on the boundary.
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FIG. 2 (color online). Evolution of the violation of the
Hamiltonian constraint on the x1 axis for R4. Zero means no
violation whereas one corresponds to the largest violation.
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approximated by that of the EdS universe in the shown
period of � except for a short period in the beginning. This
result is consistent with the suggestion given by the
numerical simulation of the collapsing eight-black-hole
lattice [5] and an initial data sequence [7].

It is worth noting the reason why we have defined the
effective scale factor by Eq. (13). The reason is that, since
the total volume inside the box is infinite, it is hard to
define the volume average in a physically meaningful
manner. Therefore, we do not use the spatial volume
average to define the effective scale factor differently
from other many related works (see, e.g., Ref. [16] and
references therein).

The number of black holesNBH inside the Hubble radius
H�1

EdS is given by

NBH � 1

M
� 4�

3
H�3

EdS �
3

8�
H2

EdS ¼ H�1
EdS

2M
¼ 3

4

�þ �f
M

;

(16)

and we obtainNBH � 100 for �� 130M. As was discussed
in Ref. [7], it is expected that the deviation of the black
hole universe from the EdS one becomes the smaller, the
larger NBH becomes; or, in other words, the effects of local

inhomogeneities on the global expansion law are negli-
gible ifNBH is sufficiently large. If so, the expansion law of
the black hole universe will approach to that of the EdS
universe as it expands, and the present result supports this
expectation.
The universe model studied here is highly idealized,

since this work is the first step in the study of the
Universe dominated by black holes. Generalizations of
our toy model to that with varieties of mass and separation,
etc., and the dependence of the results on them are still
open issues which should be clarified in the future.
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aA and aL from aEdS for each resolution.
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