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We analyze diffusion equations in strongly coupled Coulomb mixtures of ions in dense stellar matter.

Strong coupling of ions in the presence of gravitational forces and electric fields (induced by plasma

polarization in the presence of gravity) produces a specific diffusion current which can separate ions with

the same A=Z (mass to charge number) ratios but different Z. This Coulomb separation of ions can be

important for the evolution of white dwarfs and neutron stars.
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Introduction.—In this Letter we consider diffusion in a
multicomponent plasma of ions in dense stellar matter.
This diffusion can greatly affect the composition of matter,
particularly in cores of white dwarfs and envelopes of
neutron stars. It produces redistribution of ions (heavier
ions move to the star’s center) and extra energy release that
reheats the star and affects its thermal evolution. For
example, we can mention gravitational settling of 22Ne in
carbon-oxygen (12C–16O) cores of white dwarfs (see, e.g.,
Refs. [1–5]) which is thought to reheat old white dwarfs
and helps explain observational data. Diffusion of ions
affects also chemical evolution and nuclear burning in
envelopes of neutron stars (e.g., Refs. [6–8]). Transport
properties are important also in dusty plasmas with their
numerous applications (e.g., Ref. [9]).

Diffusion equations are well studied in physical kinetics
for the case when the ions constitute almost ideal plasma
[10,11]. However, the ion plasma in white dwarfs and
neutron stars is typically strongly coupled by Coulomb
forces. The diffusion coefficients of ions in strongly
coupled Coulomb plasma have been extensively studied
in the literature, mainly by molecular dynamics simula-
tions (e.g., Refs. [12–14]). Here we address a delicate
problem of diffusion currents in strongly coupled
Coulomb plasma of ions.

Diffusion currents.—Consider a plasma which consists
of electrons and a mixture of ion species j ¼ 1; 2; . . . , with
atomic numbers Aj and charge numbers Zj. Let nj be the

number density of ions j. The electron number density is
ne ¼ P

jZjnj (due to charge neutrality).

It is convenient to introduce (e.g., Ref. [15]) the
Coulomb coupling parameter �j for ions j,

�j ¼
Z2
je

2

ajkBT
¼ Z5=3

j e2

aekBT
; (1)

where T is the temperature, kB is the Boltzmann constant,

ae ¼ ð4�ne=3Þ�1=3 is the electron-sphere radius, and aj ¼
aeZ

1=3
j is the ion-sphere radius (for a sphere around a given

ion, where the electron charge compensates the ion

charge). Therefore, �j is the ratio of a typical electrostatic

energy of the ion to the thermal energy. If �j � 1 then the

ions constitute an almost ideal Boltzmann gas, while for
�j * 1 they are strongly coupled by Coulomb forces (con-

stitute either Coulomb liquid or solid). One component ion
plasma solidifies at � � 175. We restrict ourselves to the
gaseous or liquid ion plasma.
The diffusion currents in almost ideal plasma are well

defined [10,11] but the case of nonideal plasmas requires
special attention. We introduce these currents in the spirit
of Landau and Lifshitz [16]. Consider the matter which is
slightly off thermodynamic equilibrium because of the
presence of forces F� [which act on all particles �—
electrons (� ¼ e) and ions (� ¼ j)] and number density
gradients rn�. For simplicity consider isothermal matter
(no temperature gradients rT ¼ 0, and hence no devia-
tions from thermal equilibrium). The forces F� and gra-
dients rn� induce (weak) gradients of chemical potentials
r�� of particles �. Let us introduce

~F� ¼ F� � r�� ¼ e�Eþm�g� r��; (2)

where we set F� ¼ e�Eþm�g (e� and m� being electric
charge and mass of particles �, respectively). The forceF�

is produced by gravitational acceleration g (that can be
treated as a constant in the local approximation) and the
electric field E due to weak plasma polarization in the
gravitational field.
Note that X

�

n� ~F� ¼ �g� rP; (3)

where � ¼ P
�m�n� is the mass density of the matter and

rP ¼ P
�n�r�� (as prescribed by thermodynamics

[17]), P being the (total) pressure. The electric field drops
off the sum because of electric neutrality but it is most
important for driving different particle species (e.g.,
Refs. [7,8]).
If particles � are in mechanical equilibrium, then

~F� ¼ 0. This condition is exactly the same as the condition
of chemical equilibrium used in Ref. [8]. If the plasma is in
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hydrostatic equilibrium as a whole, then
P

�n� ~F� ¼ 0 and
�g ¼ rP. Hydrostatic equilibration (�g ¼ rP) in neutron
stars and white dwarfs is established over milliseconds—
minutes [18] but diffusive motion of ions can last over
gigayears (Gyrs) (see, e.g., Ref. [5]). This diffusion is
studied by standard methods of physical kinetics [10,11]
assuming �g ¼ rP.

In the diffusion problem, a deviation of particles � from
mechanical equilibrium in matter can be conveniently
measured by the vector

d� ¼ ��

�

X
�

n� ~F� � n� ~F�; (4)

where �� ¼ m�n� is the partial mass density of particles
�. Clearly,

P
�d� ¼ 0.

Let J� ¼ ��V� be the diffusive flux of particles � (V�

being the diffusion velocity of particles � [10,11]).
Phenomenological transport equations can be written as

J� ¼ �
X
���

m�m�D��d�; (5)

where D�� [cm2 s�1] can be called a generalized diffusion

coefficient of particles � relative to �, and � is a normal-
ization function to be chosen later. The diffusion coeffi-
cients should respect the relation

X
�

J� ¼ 0: (6)

In a rarefied, almost ideal plasma, we have ~F� ¼ F� �
n�1
� rP�, where P� is the partial pressure of particles �.

Then Eq. (5) reduces to the standard definition of diffusion
coefficients in rarefied gases [10,11]. For strongly interact-
ing particles, partial pressures P� are ambiguous, while the
definition (5), based on chemical potentials ��, is not.

While the ions are heavy and slow, the electrons are light
and mobile. If we are interested in transport properties of
ions, we can describe the electrons by the approximation
similar to the Born-Oppenheimer approximation in the
theory of molecules [19]. Specifically, we assume that
the electron gas is always in the state of mechanical
(quasi)equilibrium adjusting itself almost instantly to the
motion of multicomponent ion plasma. Since the electrons
are light, we can set me ! 0. Then from Eq. (4) we have

de ¼ �ne ~Fe. Therefore, the electron quasiequilibrium
implies

de ¼ 0; ~Fe ¼ �eE� r�e ¼ 0: (7)

It allows us to factorize electrons out in the problem of ion
transport (diffusive fluxes of ions are mostly determined by
a nonequilibrium state of the ion subsystem [20]). In this
case Eqs. (5) and (6) retain their form but indices � and �
label only ion species (j ¼ 1; 2; . . . ). Note that Eq. (5) is
strictly valid for nonrelativistic particles, whereas the elec-
trons in dense matter can be relativistic. However, the

factorization works well even for relativistic electrons as
long as they can be treated as massless.
In the presence of two ion species (j ¼ 1, 2) we have

J1 ¼ �J2, d1 ¼ �d2, and D12 ¼ D21 � D. Then kinetic
phenomena can be characterized by one diffusion coeffi-
cient D,

J 2 ¼ �J1 ¼ nm1m2

�kBT
Dd1: (8)

Here we have chosen � ¼ n=ð�kBTÞ (n ¼ n1 þ n2 being
the total number density of the ions). Then D corresponds
to the standard definition of the diffusion coefficient [10,11]
for two-component plasma of ions (as follows from the
equations presented below). Let us simplify Eq. (8).
From Eq. (4) we have

dj ¼ ��j

�
rP� njeZjEþ njr�j; (9)

with j ¼ 1 or 2. Because d1 þ d2 ¼ 0, we obtain the
expression for E:

eneE ¼ �rPþ n1r�1 þ n2r�2: (10)

Substituting it into (9) and settingmj ¼ Ajmu (mu being

the atomic mass unit), we have

d1 ¼ n1n2
ne

�
muðZ1A2 � Z2A1ÞrP� þ Z2r�1 � Z1r�2

�
:

(11)

Quite generally, the chemical potential of ions j is �j ¼
�ðidÞ

j þ�ðCÞ
j , where (id) and (C) label the ideal gas and

Coulomb contributions, respectively (see, e.g., Ref. [15]).
Then d1 ¼ da þ db þ dc, with

da ¼ muZ1Z2

n1n2
ne

�
A2

Z2

� A1

Z1

�rP
�

; (12)

db ¼ n1n2
ne

½Z2r�ðidÞ
1 � Z1r�ðidÞ

2 �

¼ kBT

ne
ðZ2n2rn1 � Z1n1rn2Þ; (13)

dc ¼ n1n2
ne

½Z2r�ðCÞ
1 � Z1r�ðCÞ

2 �: (14)

In Eq. (13) we have used the well-known relation

r�ðidÞ
j ¼ kBTn

�1
j rnj.

Combined with (8), these equations give us the expres-
sion for J2. It contains three terms labeled by subscripts a,
b, and c. The terms a and b are well known while the term
c seems new.
(a) Assume that the matter is in hydrostatic equilibrium

as a whole. Then in Eq. (12) we have rP ¼ �g, so that da

describes gravitational sedimentation of the ions 2 (pro-
vided their effective ‘‘molecular weight’’ A2=Z2 is larger
than that, A1=Z1, for ions 1).
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(b) The term db is especially simple in the limit of n2 �
n1. Then ne � Z1n1 and db ¼ �kBTrn2, which corre-
sponds to ordinary diffusion of ions 2. Generally, db
describes diffusive motion of the ions if their number
densities are out of equilibrium.

(c) The term dc is most important in the regime of strong
ion coupling and can be accurately described in the ion-
sphere approximation combined with the linear mixing
rule (e.g., Ref. [15] and references therein):

�ðCÞ
j ¼�0:9

Z5=3
j e2

ae
; r�ðCÞ

j ¼�0:3
Z5=3
j e2

ae

rne
ne

: (15)

Then

dc ¼ 0:3
n1n2
ne

Z1Z2e
2

ae
ðZ2=3

2 � Z2=3
1 Þrne

ne
: (16)

The structure of dc is similar to that of da: it describes
specific (‘‘Coulomb’’) sedimentation of ions 2 (provided
Z2 > Z1) due to Coulomb coupling in the gravitational
field. Its remarkable feature is that it operates even for
ions with A1=Z1 ¼ A2=Z2. Such ions are usually thought
to have the same ‘‘molecular weights.’’ Then da ¼ 0 (as
long as we neglect small mass defects of ions 1 and 2) and
one commonly assumes that such ions are not separated.
We see that it is not true.

By way of illustration, let us rewrite Eq. (8) under
simplifying assumptions which are usually satisfied in
the cores of white dwarfs and outer envelopes of neutron
stars. Assume that the pressure is provided by strongly
degenerate electrons P ¼ PeðneÞ [which allows us to
express rne in Eq. (16) through rP] and the hydrostatic
equilibrium is established (rP ¼ �g). Then we obtain the
diffusion flux in the standard form

J2 ¼ D
m1m2n

�ne
ðZ2n2rn1 � Z1n1rn2Þ þ ðua þ ucÞm2n2;

(17)

where

ua ¼ �1nD

�nekBT
Z1Z2mug

�
A2

Z2

� A1

Z1

�
; (18)

uc ¼ �1nD

nekBT
Z1Z2gðZ2=3

2 � Z2=3
1 Þ 0:3e

2

aeP�
(19)

are the velocities of gravitational settling of ions 2 due to
‘‘molecular weight’’ difference and Coulomb separation,
respectively; � ¼ @ lnP=@ ln�.

Note that, when the matter is in hydrostatic equilibrium,
the gravitational settling of ions 2 is accompanied by
‘‘lifting’’ of ions 1 (with J1 ¼ �J2). Such diffusive mo-
tion of ions initiates collisional production of the specific
entropy ( _Scoll) and the associated thermal energy release at
a rate Q [erg cm�3 s�1] (e.g., Refs. [10,11])

Q ¼ T _Scoll ¼ �

�1�2

J2 � d1; (20)

which is easily computed.
Discussion and conclusions.—Although the diffusion

flux (17) has a standard form, it contains a new gravita-
tional settling term (19) due to Coulomb separation. This
separation has been predicted by Chang, Bildsten, and
Arras [8] who considered equilibrium distributions of ion
mixtures including the Coulomb interaction term. Thus we
extend their work to nonequilibrium mixtures and show
that the Coulomb separation is pronounced in the diffusion
flux (17) and drives gravitational settling of ions.
The most pronounced effect occurs at temperatures at

which the ions constitute strongly coupled Coulomb liquid.
At lower temperatures the ions solidify and diffuse much
more slowly [14]. At higher T Coulomb coupling is weak
and less efficient (although generally available). The
Coulomb sedimentation should be especially important
for the mixtures of ions with the same A=Z (for instance,
mixtures of 4He, 12C, and 16O ions). The traditional gravi-
tational sedimentation (18) in such mixtures is greatly
suppressed (can occur only due to mass defects of atomic
nuclei [8]). The Coulomb settling in these mixtures (19) is
typically much stronger than (18). The ions with larger Z
should move to deeper layers. The effect is stronger for a
larger difference of Z in the mixture.
Because the effect is primarily driven by gravitational

forces, it should be most pronounced in compact stars
(white dwarfs, and especially in neutron stars) with stron-
gest gravity. First of all we mean 4He–12C cores of low
mass white dwarfs and 12C–16O cores of more massive
white dwarfs, and evolution of similar mixtures in the
envelopes of neutron stars. The velocity of sedimentation
is given by Eq. (19) using appropriate diffusion coefficients
(e.g., Refs. [12–14,20], and references therein).
Figure 1 presents the velocity uc in the

12C–16O cores of
medium mass and massive white dwarfs and in the
4He–12C cores of low mass white dwarfs. The adopted
temperate range T � ð0:5–5Þ � 107 K is appropriate to
rather old white dwarfs (e.g., Ref. [21]). The settling
velocities are higher for massive white dwarfs (with larger
g). The velocity profile throughout the core has a maxi-
mum at the core boundary r ¼ Rcore, where the gravita-
tional acceleration gðrÞ is the largest. The velocity uc ! 0
as r ! 0 because gðrÞ ! 0 at the star’s center. The maxi-
mum velocity in the massive (1:2M	) white dwarf reaches
�100 kmGyr�1, meaning that the 12C–16O separation in
the outer core can occur in a few Gyrs. The velocity of
Coulomb separation of 12C and 16O ions is typically lower
than the settling velocity of 22Ne ions in the 12C–16O core
[1–5], but the fraction of 22Ne ions is much smaller than the
fractions of 12C and 16O. Using Eqs. (19) and (20) we have
estimated the thermal energy generation rate QðrÞ which
accompanies this separation and found it insufficiently
high to noticeably reheat old white dwarfs. The profile
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QðrÞ has maximum in the outer part of the white dwarf
core. Note that our estimates neglect the direct diffusion
term [the first term in Eq. (17)] which can enhance QðrÞ.

The Coulomb separation of 4He, 12C, and 16O ions can
be important in isolated and accreting white dwarfs. It
affects chemical composition and, therefore, microphysics
of white dwarf core (heat capacity, thermal conductivity,
neutrino emission, nuclear reaction rates) as well as chemi-
cal, thermal, and nuclear evolution of white dwarfs.
Redistribution of ions due to Coulomb separation can
affect also vibration properties of stars (asteroseismology).

Coulomb separation of ions with equal A=Z in neutron
star envelopes is much stronger than in white dwarfs.
Figure 2 plots the sedimentation velocity uc of 12C ions
mixed with 4He in the outer neutron star envelope versus
depth z (measured from the surface) for two effective
surface temperatures, Ts ¼ 1 and 2 MK. The temperature
profile TðzÞ within the envelope has been determined by
solving the heat transport equation for a conserved heat
flux emergent from stellar interior (see, e.g., Ref. [8]). The
envelope is nonisothermal and the temperature gradient
can affect diffusion which we ignore for simplicity.
Therefore, the presented curves should be treated as illus-
trative. For the densities of �105–107 g cm�3 (a few to a
few tens of meters under the surface) the sedimentation
velocity can reach a few meters per year. The separation
can affect nuclear evolution of the matter in the outer layers
of accreting neutron stars. It will change the thermal

conductivity of this matter, influence the relation between
the surface and inner temperatures of neutron stars, and
affect cooling of isolated and accreting neutron stars (see,
e.g., Refs. [6–8,22–24], and references therein).
Similar Coulomb separation can occur in dusty plasmas

which have many applications in science and technology
(e.g., Ref. [9]).
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