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We investigate the Brownian motion of boomerang colloidal particles confined between two glass

plates. Our experimental observations show that the mean displacements are biased towards the center of

hydrodynamic stress (CoH), and that the mean-square displacements exhibit a crossover from short-time

faster to long-time slower diffusion with the short-time diffusion coefficients dependent on the points used

for tracking. A model based on Langevin theory elucidates that these behaviors are ascribed to the

superposition of two diffusive modes: the ellipsoidal motion of the CoH and the rotational motion of the

tracking point with respect to the CoH.
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Brownian motion as a general phenomenon of diffusion
processes has inspired extensive research [1–12] due to
both its interesting physics and practical applications such
as in microrheology [13–16], self-propelled micro-
swimmers [17] and particle and molecular separation
[18–20]. Inspired by the diverse geometric shapes of bio-
logical macromolecules, Brenner and others have extended
the hydrodynamic theory of Brownian motion to particles
with irregular shapes [21–27]. A set of hydrodynamic
centers are introduced, which include the center of hydro-
dynamic stress (CoH) where the coupling diffusion matrix
becomes zero, the center of reaction where the coupling
resistance matrix becomes symmetric and the center of
diffusion where the coupling diffusion matrix becomes
symmetric [22,24,28]. For screwlike or skewed particles,
the translational and rotational motions are intrinsically
coupled; therefore, the CoH does not exist and the centers
of diffusion and reaction differ from each other. By con-
trast, for nonskewed particles, there always exists a unique
point at which these three hydrodynamic centers coincide.

Thus far, experimental studies on Brownian motion have
been focused primarily on spherical particles; it was only
recently that the Brownian motion of low-symmetry parti-
cles was explored in experiments [5,29–37]. Particle shapes
are critical to various applications such as self-propelled
microswimmers and particle or molecular separations
[17,38]. By engineering particle shapes, microswimmers
may be tailored to perform circular, spinning-top, or other
types ofmotion [38–40]. Understanding the hydrodynamics
of chiral particles may lead to new avenues towards sepa-
ration of particle or molecular enantiomers [41].

In this Letter we study the Brownian motion of
boomerang-shaped colloidal particles under quasi-two-
dimensional (2D) confinements. The boomerang particles
with C2v mirror symmetry represent an attractive system
for studying the Brownian motion of low symmetry parti-
cles because their center of mass and CoH do not coincide
and both lie outside the body. Especially, the location of the

CoH is unknown before the motion of any tracking point
(TP) is analyzed. Boomerang particles may also serve as a
model system for active microswimmers [40], the electro-
optical properties of DNA molecules [42–45], and liquid
crystalline ordering [46].
Our experimental and theoretical studies show that the

diffusion of the boomerangs is rather different from that of
spheres and ellipsoids. (i) The mean displacements (MD)
for fixed initial angle are biased towards the CoH, and the
mean square displacements (MSDs) exhibit a crossover
from short- to long-time diffusion with different diffusion
coefficients. (ii) The boomerangs confined in quasi-2D are
nonskewed and possess a CoH where translation and rota-
tion are decoupled in the body frame. (iii) Our model based
on Langevin theory shows that the nonzero MDs result
from the Brownian orbital motion of the TP with respect to
the CoH. (iv) Two methods for calculating body frame
displacements which give indistinguishable results for
ellipsoids, yield drastically different results for boomerang
particles.
The boomerang colloidal particles made of photo-

curable polymer (SU8) were fabricated by using photoli-
thography [47] and have a 2:1 �m arm length, 0:51 �m
thickness, 0:55 �m arm width, and a 90� apex angle
[Fig. 1(a)]. The aqueous suspension of the particles, stabi-
lized by adding sodium dodecyl sulfate, (SDS, 1mM) was
filled in a cell of �2 �m thickness. Videos of isolated
moving boomerangs were taken using a CCD camera at
time step � ¼ 0:05 s. Limited by the computer memory,
each video contains 3000 frames and a total of 167 videos
were taken for the same particle.
We developed an image processing algorithm to track

the position and orientation of the boomerang particles.
The cross point between the central axes of the two arms
represents the center of the body (CoB) and is a convenient
point for motion tracking. The angle bisector gives the
particle orientation � [Fig. 1(b)]. The precision of our
optical microscope and tracking algorithm is determined
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to be�13 nm and�0:004 rad for position and orientation,
respectively. Trajectories obtained from all videos were
merged into a single trajectory of �5� 105 frames. To
merge two trajectories together, the particle coordinates in
the second video are shifted and rotated such that the
position and orientation of the first frame in the second
video matches those of the last frame in the first video.
Figures 1(c) and 1(d) show representative trajectories of
the CoB and CoH at different time scales where the cou-
pling between translational and rotational motions can be
easily observed (the method to locate the CoH will be
discussed later).

In Fig. 2(a), the angle averaged MSDs of the CoB along
x1 and x2 are identical, implying that the Brownian motion
is isotropic on average. In contrast to the MSDs for ellip-
soids that grow linearly with time, the MSDs for the
boomerangs exhibit linearity with time only in short
and long times with a nonlinear crossover region around
t ¼ 10 s. Best linear fittings give the short- and long-time
diffusion coefficients, respectively, as �DST¼0:082�m2=s,
�DLT ¼ 0:057 �m2=s. In Fig. 2(b), the rotational Brownian
motion is linear at all times h½��ðtÞ�2i ¼ 2D�t, with the
diffusion coefficient D� ¼ 0:044 rad2=s.

To discern anisotropic features in the Brownian
motion, we measured the MSDs with the initial angle fixed
at �0 ¼ 0. Because of its anisotropic shape, the MSDs at
short times exhibit different diffusion coefficients along

x1 and x2. At long times when the directional memory is
washed out, the MSDs grow again linearly with t with
identical slope for both x1 and x2 [Fig. 2(c)]. To note, the
MSDs along x1 is larger than that along x2 at long times,
while they are identical for ellipsoids [5].
Although the MDs for Brownian motion are typically

zero, we find that it is not the case for the boomerangs. The
MDs averaged over different initial angle �0 are indeed
zero (data not shown here). However, with initial angle
fixed at �0 ¼ 0, the MDs along x1 are nonzero [Fig. 2(d)]
and saturate at long times. Such nonzero MDs along the
symmetric line are in sharp contrast with the zero MDs
observed for spheres and ellipsoids.
To understand these observations, we assume that the

boomerangs confined in 2D possess a CoH (as will later be
proved experimentally). The position of a TP on the
symmetric line can be expressed as xðtÞ ¼ xCoHðtÞ �
r cos�ðtÞx̂1 � r sin�ðtÞx̂2, where r is the vector from the
CoH to the TP. When the CoB is used as the TP, we denote
the CoB-CoH separation as d0. From the definition of the
CoH, the descriptions of the Brownian motion of the CoH
requires only one rotation diffusion coefficient D� and two
translation diffusion coefficients DCoH

22 and DCoH
11 , and

therefore the Langevin equations for the CoH are actually
the same as those for an ellipsoid. As shown in the
Supplemental Material [48], the MDs and MSDs of the
TP for fixed initial angle �0 can be written as

FIG. 2 (color online). (a) MSDs of the CoB in the lab frame vs.
t. Red line: the best linear fit for t < 10 s; dark brown line:
theoretical fit using Eq. (2). Inset: linear plot of MSDs vs. t.
(b) MSDs of � vs. t with the best linear fitting (red line).
(c) MSDs for the CoB in the lab frame with �0 ¼ 0. Red lines:
theory curves with Eq. (1b). (d) MDs in the lab frame with
�0 ¼ 0. Red line: theory curve of Eq. (1a) using D� and D2�

obtained from Fig. 2(b) and 3(e).

FIG. 1 (color online). (a) SEM image of the boomerang
particles fabricated on a silicon wafer. (b) Optical microscopic
image and schematics of the coordinate systems. (x1 � x2) is the
lab frame and (X1 � X2) is the body frame. (c) Representative
trajectories of 5 different total lengths of time, where the red
spots represent the positions of the CoH, and the boomerang is
colored-coded in time. (d) An exemplary 300 s trajectory for the
CoH (green) and the CoB (blue).
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h�xiðtÞi�0 ¼ rai�1ðtÞ (1a)

h½�xiðtÞ�2i�0 ¼ 2 �DCoHtþ cos2�0ðr2=2þ�D=4D�Þbi�4ðtÞ
þ 2r2a2i �1ðtÞ; (1b)

where �n ¼ 1� expð�nD�tÞ, a1 ¼ cos�0, a2 ¼ sin�0,
b1 ¼ �1, b2 ¼ 1, �DCoH ¼ ðDCoH

11 þDCoH
22 Þ=2, �D ¼

DCoH
22 �DCoH

11 . Equation (1a) indicates that h�x1ðtÞi�0 for

the CoB saturates at r ¼ d0 in the long time, or the
Brownian motion is biased towards the CoH. These theo-
retical expressions agree well with the experimental results
[Figs. 2(c) and 2(d)].

Averaging Eq. (1a) and (1b) over different initial angle
�0 leads to that the angle averaged MDs are zero and the
angle-averaged MSDs are expressed as [48]

h½�x1;2ðtÞ�2i ¼ 2 �DCoHtþ r2�1ðtÞ: (2)

Here the crossover time of the �1ðtÞ term is determined by
the rotational diffusion coefficient, �� ¼ 1=ð2D�Þ ¼ 11 s.
Equation (2) indicates that the short-time diffusion coeffi-
cient �DST ¼ �DCoH þ r2D�=2 is dependent on the position
of the TP, while the long time diffusion coefficient �DLT ¼
�DCoH is independent of the TP. This expression fits very
well the experimental data Fig. 2(a). This crossover has
been predicted by previous theory [25,49] and is observed
here for the first time in experiments.

This model also shows that the nonzero MDs originate
from the Brownian motion of the vector r, considering that
the motion of the CoB is the superposition of the ellipsoid-
like motion of the CoH and the motion of r. The Brownian
rotation of the vector r results in random displacements of
the CoB on an arc centered at the CoH [dashed line in
Fig. 1(b)]; the projection of these random orbital displace-
ments is symmetric to the CoB along the X2 axis while
biased on average towards the CoH along the X1 axis.
When this Brownian orbital motion of the CoB covers a
circle for t � ��, the MDs saturate and the Brownian
motion is dominated by that of the CoH.

To measure the other elements of the diffusion tensor,
the translational displacements need to be transformed into
a body frame comoving with the particle. One convenient
body frame has its origin fixed at the CoB and X1 axis
coincident with the symmetry axis [Fig. 1(b)]. The dis-
placements between consecutive body frames were
obtained from those in the lab frame through the rotational
transformation �Xið�; tnÞ ¼ Rijð�nÞ�xjð�; tnÞ, where i,

j ¼ 1 or 2, and Rijð�nÞ is the rotation transformation

matrix. The body frame trajectories are constructed by
accumulating the displacements, XiðtnÞ ¼ P

n
k¼0 �XiðtkÞ.

One has two different choices of �n: �n ¼ �ðtnÞ repre-
senting the orientation at the beginning of each time inter-
val, or ½�ðtnÞ þ �ðtnþ1Þ�=2 representing the average
orientation during the time interval. One previous work
shows that these two choices give indistinguishable results
for particles of high symmetry such as ellipsoids [5].

However, we find that the distinction between these two
frames becomes important for low-symmetry particles
such as the boomerangs. We term the first [�n ¼ �ðtnÞ]
as the discrete body frame (DBF) and the second
[�n ¼ ½�ðtnÞ þ �ðtnþ1Þ�=2] as the continuous body frame
(CBF) [48].
In the CBF, the measured MDs along both the X1 and X2

directions are zero [Fig. 3(a)], and the MSDs are linear
with time, h½�XiðtÞ�2i ¼ 2Diit with the diffusion coeffi-
cients D11 ¼ 0:049 �m2=s and D22 ¼ 0:117 �m2=s
[Fig. 3(c)]. In contrast, very different behaviors are
observed in the DBF. While the MD along X2 is zero, the
MD along X1 is nonzero and grows linearly with time
[Fig. 3(b)]. Accompanying this nonzero drift, the MSDs
along X1 exhibit nonlinearity with time [Fig. 3(d)]. Since
the orientation of the DBF is reset at the beginning of each
time step, the nonzero value of h�X1i seen in the DBF is
actually a manifestation of the nonzero MDs h�x1i
observed in the lab frame for �0 ¼ 0.
Since the displacements of the CoB along X2 tend to

induce rotation and vice versa, the coupled diffusion

FIG. 3 (color online). (a)–(b) MDs vs t in the CBF (a) and
DBF (b). The red line in (b) is the theory curve of Eq. (4a).
(c)–(d) MSDs vs t in the CBF (c) and DBF (d). In (c), the red
lines are the best linear fittings. In (d), the dark brown curve is
Eq. (4b) with D� and D2� obtained from the data in Fig. 2 and
the red straight lines have the same slopes as those in (c).
(e)–(f) Translation-rotation correlations vs t in the CBF (e)
and DBF (f). The red lines are the best linear fitting.
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coefficient D2� is nonzero. While the translational motion
of the CoB along X1 is decoupled with rotation,D1� is thus
zero. Our experimental results show that the DBF and CBF
give rise to similar results for the translation-rotation
correlation functions [Fig. 3(e) and 3(f)]. Linear fitting
of these data with h�XiðtÞ��ðtÞi ¼ 2Di�t gives a negli-
gible value for D1�ð� �0:002 �m 	 rad=sÞ, and D2� ¼
0:051 �m 	 rad=s [Figs. 3(e) and 3(f)].

The differences between the CBF and DBF can be
ascribed to the differences between the displacements of
the vector r in these two body frames. The first and second
moments of displacements for the TP can be expressed in
the CBF as [48]

h�X1ðtÞi ¼ h�X2ðtÞi ¼ 0; (3a)

h�X2
1ðtÞi ¼ 2D11t ¼ 2DCoH

11 t; (3b)

h�X2
2ðtÞi ¼ 2D22t ¼ 2ðDCoH

22 þ r2D�Þt; (3c)

and in the DBF as

h�X1ðtÞi ¼ rD�t; h�X2ðtÞi ¼ 0; (4a)

h�X2
1ðtÞi ¼ 2DCoH

11 tþ ðrD�Þ2t2; (4b)

h�X2
2ðtÞi ¼ 2D22t ¼ 2ðDCoH

22 þ r2D�Þt: (4c)

The CBF and DBF give the same forms for the translation-
rotation correlation functions: h�X1��i ¼ 0, and
h�X2��i ¼ 2D2�t ¼ 2rD�t [48]. These theoretical results
agree well with the experiments [Fig. 3].

Based on Eq. (1a) and (4a), the slopes of the MDs vs
time are the same at short times in the DBF and in the lab
frame (for �0 ¼ 0), which agrees with the experiments
[Figs. 2(d) and 3(b)]. Employing the DBF provides a
physical picture consistent with the lab frame observations,
while using the CBF averages out the drift terms in MDs
and MSDs and provides a convenient way to calculate
diffusion coefficients.

To verify the existence of the CoH, we re-calculated
the trajectories and the diffusion coefficients for TPs
on the symmetry line with its distance from the CoB
defined as d ¼ d0 � r. We see that the theoretical expres-
sions of D22 and D2� as functions of r, D22 ¼ DCoH

22 þ
r2D�, andD2� ¼ rD�, can fit the experimental results well
[Figs. 4(a) and 4(b)]; D11 remains unchanged, D22 reaches
a minimum at d ¼ 1:16 �m andD2� crosses zero approxi-
mately at 1:16 �m. These indicate that the CoH is at a
distance d0 ¼ 1:16 �m from the CoB, which agrees with
D2� ¼ d0D�.

With the CoH as TP, the MSDs in the lab and body
frames all grow linearly with time and the translation-
rotation correlation functions are zero [Fig. S1(a)–(c)].
As expected, the differences between DBF and CBF dis-
appear. The averaged diffusion coefficient for the CoH in
the lab frame, �DCoH ¼ 0:054 �m2=s, agrees with the long-
time averaged diffusion coefficient of the CoB.

Theoretical studies have shown that bent rods in 3D are
skewed [25], and thus it is not trivial to prove the existence
of the CoH for the boomerangs in quasi-2D confinements.
In general, particles with only two mutually perpendicular
symmetry planes are skewed in 3D [22]. The difference
between the 2D and 3D behaviors can be understood as the
following: at the CoH, translation in the X1-X2 plane is
decoupled from the rotation of �; while at the same point in
three dimensions, translation perpendicular to the X1-X2

plane is not decoupled from rotation around X2. Therefore,
raising cell thicknesses will lead not only to variations in
diffusion coefficients as seen in spherical particles [50–52],
but also to qualitatively different behaviors. While our
experiments with 1.7 and 1:9 �m thick cells for the same
or different boomerang particles show qualitatively similar
results, the crossover from the nonskewed 2D behaviors to
skewed 3D behaviors is worthy of further detailed studies.
In conclusion, we have shown that the Brownian mo-

tion of the boomerang particles exhibits nonzero MDs for
fixed initial angles, TP-dependent short-time and TP-
independent long-time diffusion coefficients as results of
nonoverlap between the TP and its CoH. These results
observed in boomerangs should occur in any nonskewed
particles as long as the TP is not coincident with the CoH,
and thus have important implications for studying the
diffusion and transport of anisotropic particles. The subtle
difference between the CBF and DBF has significant influ-
ence on proper calculations of diffusion coefficients. Prior
theoretical studies have provided analytical results regard-
ing the orientation distributions of bent rods under external
fields [42–45]; it will be interesting to study how the
boomerangs transport under gravitational or electropho-
retic forces.
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Tom Lubensky, and Kun Zhao for valuable discussions and
Oleg Lavrentovich for both valuable discussions and using
the equipment in his lab. Partial financial support from
NSF Grant No. DMR-1106014, ECCS-0824175, and the
Farris Family Award are acknowledged.

FIG. 4 (color online). (a) D11 and D22 vs d. Red and green
lines are theory curves based on Eqs. (3b) and (3c). (b) D1� and
D2� vs d. Red and green lines are the theory curves of D2� ¼
rD� and D1� ¼ 0, respectively. The dashed lines indicate the
CoH at d0 ¼ 1:16 �m.
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