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We point out a formal analogy between the Dirac equation in Majorana form and the discrete-velocity

version of the Boltzmann kinetic equation. By a systematic analysis based on the theory of operator

splitting, this analogy is shown to turn into a concrete and efficient computational method, providing a

unified treatment of relativistic and nonrelativistic quantum mechanics. This might have potentially

far-reaching implications for both classical and quantum computing, because it shows that, by splitting

time along the three spatial directions, quantum information (Dirac-Majorana wave function) propagates

in space-time as a classical statistical process (Boltzmann distribution).
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Boltzmann and Dirac.—Analogies between the nonrela-
tivistic Schrödinger equation and fluid dynamics have been
noted since the early days of quantum mechanics. In
particular, back in 1927, Madelung noticed that, by

expressing the wave function in eikonal form, i.e., � ¼
ReiS=@, the Schrödinger equation turns into the hydrody-
namic equation of a compressible, inviscid fluid, with
number density � ¼ R2 and velocity ~u ¼ �rS=m. The
quantum fluid is subject to the classical potential Vcð ~xÞ
plus the quantum potential Vqð ~xÞ ¼ �ð@2=2mÞð�RÞ=R.
Although the hydrodynamic analogy is commonly
regarded as purely formal in nature, lately, its connections
with Bohm’s theory of hidden variables and de Broglie’s
pilot wave picture have received a surge of interest, mostly
in connection with experimental investigations on the
nonlocal nature of quantum physics [1].

The quantum relativistic fluid analogy seems to have
received comparatively less attention. Back in 1993, it was
noted that the Dirac equation can be regarded as a special
form of a discreteBoltzmann kinetic equation, in which the
particle velocities are confined to a handful of discrete
values [2,3]. The discrete components of the Boltzmann
distribution, fið ~x; tÞ � fð ~x; ~v ¼ ~vi; tÞ, where the index i
labels the discrete velocities, are then identified with the
spinor components c i of the Dirac equation. This opens up
an interesting connection between classical kinetic theory
and relativistic quantum mechanics.

Mathematically, the connection is not so surprising,
since both Boltzmann and Dirac equations are hyperbolic
supersets of the Navier-Stokes and Schrödinger equations,
respectively.

The interesting point, however, is that the connection
becomes much more direct and compelling by considering
the discrete-velocity version of the Boltzmann equation, in

relation to the Majorana form of the Dirac equation, in
which all matrices are real [4].
Majorana particles have attracted significant interest in

recent years, mostly in connection with the fact that
they coincide with their own antiparticles, as beautifully
discussed in a recent essay by Wilczek [5].
Here, we wish to put forward a different angle of interest

of the Majorana representation, namely, the fact that it not
only makes Boltzmann-Dirac analogy conceptually more
poignant, but it also turns it into a concrete unified compu-
tational scheme for the simulation of both relativistic and
nonrelativistic quantum wave equations, on both classical
and quantum computers. The corresponding method is
known as the quantum lattice Boltzmann (QLB) method
[2]. The QLB method is based on the identification of the
discrete Boltzmann distribution with the spinorial wave
function fið ~x; tÞ $ c ið ~x; tÞ. Even though both objects are
real, they still face a mismatch of degrees of freedom in
more than one spatial dimension, since a spinor of order s
consists of 2sþ 1 components, regardless of the number
of dimensions, while the discrete distribution requires
(at least) 2d discrete components in d spatial dimensions.
Moreover, the Dirac-Majorana matrices cannot be simul-
taneously diagonalized, reflecting the basic fact that spin-
ors are not ordinary vectors. As a result, in more than one
spatial dimensions, it is in principle not possible to keep the
particle velocity aligned with its spin.
Remarkably, both problems can be circumvented by

resorting to operator splitting. Essentially, this amounts
to splitting the spinor propagation along the three spatial
dimensions into a series of three one-dimensional propa-
gations, each using the diagonalized form of the corre-
sponding Dirac-Majorana streaming matrix. As a result, at
each propagation step the particle spin is kept aligned with
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its velocity, so that the identification fi $ c i continues to
hold.

In this Letter we show that this ‘‘heuristic stratagem’’ is
backed up by a rigorous mathematical treatment, which
leads to a unified computational approach to quantumwave
mechanics. The resulting computational scheme offers out-
standing amenability to parallel computing on electronic
computers [6] and is also suitable to prospective quantum
computing simulations [7–9].

To show its versatility also towards the inclusion of
nonlinear interactions, as an application, we shall solve a
specific form of the nonlinear Dirac equation including a
dynamical-symmetry breaking term, as first proposed by
Nambu and Jona-Lasinio (NJL).

Discrete Boltzmann and Dirac.—To set up the frame-
work, let us write down the two equations in full display.
The discrete Boltzmann equation reads as follows:

@tfi þ va
irafi ¼ �ijðfj � fej Þ; (1)

where fi ¼ fð ~x; ~v ¼ ~vi; tÞ is the probability density of
finding a particle around position ~x at time t with discrete
velocity ~vi. The latin index a ¼ x, y, z runs over spatial
dimensions and the Einstein summation rule is assumed.
The left-hand side represents the particle free streaming
(in the absence of external forces, for simplicity), while the
right-hand side is the collisional step steering the distribu-
tion function towards a local Maxwell equilibrium fei . The
(symmetric) scattering matrix �ij encodes the mass-

momentum-energy conservation laws underpinning fluid
dynamic behavior.

The Dirac equation, in Majorana form, reads as follows:

@tc i þ Saijrac j ¼ Mijc j; (2)

where Saij are the three Majorana streaming matrices and

Mij is the (antisymmetric) mass matrix, acting upon the

real spinor c i, i ¼ 1, 2sþ 1. This clearly shows a formal
analogy with the Boltzmann equation: the left-hand side
describes the free streaming of the spinors, while the right-
hand side can be regarded as a simple form of local
collision between the various spinorial components. Note
that the mass matrix has dimensions of an inverse time
scale, typically given by the Compton frequency !c ¼
mc2=@. In 1D, this analogy is ‘‘exact’’: by choosing a
representation where the Dirac matrix is diagonal
(Majorana representation), we recover Eq. (1). In multiple
dimensions, however, the story is different: the connection
can be realized only by resorting to operator splitting,
whereby each step can be written in the form of Eq. (1).
This will be discussed in the following.

Quantum lattice Boltzmann.—Let us consider the case of
spin s ¼ 1=2 particles and start from a relativistic wave
equation with matrices �, �a in the Dirac representation.
The goal here is to find the discrete time evolution of the
wave function by using the formal analogy with the
Boltzmann equation. In the QLB setting, this time

evolution proceeds by a sequence of streaming and
collisional steps, given by (we use natural units where
c ¼ @ ¼ 1)

@tc
ðxÞðtÞ ¼ ��x@xc

ðxÞðtÞ; c ðxÞðtnÞ ¼ c ðtnÞ; (3)

@tc
ðyÞðtÞ ¼ ��y@yc

ðyÞðtÞ; c ðyÞðtnÞ ¼ c ðxÞðtnþ1Þ; (4)

@tc
ðzÞðtÞ ¼ ��z@zc

ðzÞðtÞ; c ðzÞðtnÞ ¼ c ðyÞðtnþ1Þ; (5)

@tc
ðcÞðtÞ ¼ �i�mc ðcÞðtÞ; c ðcÞðtnÞ ¼ c ðzÞðtnþ1Þ; (6)

c ðtnþ1Þ ¼ c ðcÞðtnþ1Þ; (7)

where the superscript labels the step of the splitting and
tn ¼ n�t is the time after n iterations. In these equations,
the calculated solution at a given step provides an initial
condition for the next step in the sequence. Eqs. (3)–(5)
correspond to streaming while the last step in Eq. (6) is
collisional.
The streaming steps for a given coordinate a proceed as

follows. First, it should be noted that the matrix �a (for
a ¼ x, y, z) is not diagonal and, thus, the Dirac equation is
not in the form of Eq. (1). However, the latter can be
recovered by using the unitary transformation of spinors

Sa ¼ ð1=
ffiffiffi
2
p Þð�þ �aÞ. This equation allows us to trans-

form the Dirac matrices to a Majorana-like representation,

where the matrix ~�a ¼ Sya�aSa ¼ � is diagonal, with
eigenvalues �1. Then, by introducing the transformed

spinor as ~c ðaÞ ¼ S�1a c ðaÞ, the streaming steps can be
turned into

@t ~c
ðaÞðtÞ ¼ ��@a ~c ðaÞðtÞ; (8)

which is clearly in the form of Eq. (1) without the colli-
sional term. This has a solution given by

~c ðaÞ1;2ðtnþ1;xÞ ¼ ~c ðaÞ1;2ðtn; xa ��tÞ; (9)

~c ðaÞ3;4ðtnþ1;xÞ ¼ ~c ðaÞ3;4ðtn; xa þ�tÞ; (10)

where xa þ va
i ¼ xa ��t, i ¼ �1, 1, is the lattice neigh-

bor pointed by the discrete speed va
i ¼ �c. This corre-

sponds to an exact integration of the streaming operator
along the characteristics�xa ¼ �c�t (light cones), which
is typical of the lattice Boltzmann method.
The collision step can also be integrated exactly by using

the solution

c ðcÞðtnþ1Þ ¼ e�i�m�tc ðcÞðtnÞ � Cc ðcÞðtnÞ: (11)

It is then possible to write C ¼ e�M�t explicitly as a 4� 4
matrix by using properties of Dirac matrices [10].
It is readily shown that the above discrete system is

unitary for any value of the time step �t. Moreover, it
looks like a classical motion of two discrete walkers,
hopping by one lattice unit along every coordinate at
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each time step and colliding according to the scattering
matrix M ¼ i�m. More complex interactions can be
treated in a similar way by including the interaction terms
into the scattering matrix. As long as the matrix is local, it
is not necessary to diagonalize S and M simultaneously,
and due to the operator splitting, the simplicity of the
lattice Boltzmann formalism is not compromised. For
instance, for the coupling to an electromagnetic field, the
scattering matrix is given by M ¼ i�m� ie�aAaðx; tÞ þ
ieVðx; tÞ, where (Aa, V) is the electromagnetic potential.

Symbolically, the 3D evolution of the Dirac spinor reads
like a sequence of three one-dimensional stream steps and
one collisional step:

c ðtnþ1;xÞ ¼ CðSzPzS
�1
z ÞðSyPyS

�1
y ÞðSxPxS

�1
x Þc ðtn;xÞ;

(12)

where Pa ¼ e��t�@a is a translation operator along the
direction a. The latter shifts the ‘‘1,2’’ and ‘‘3,4’’ spinor
components by ��t, respectively.

Of course, this procedure is not exact: as shown in the
following, it corresponds to an operator splitting method
where the streaming and collision matrices do not com-
mute. However, each step of the splitting is exact and, thus,
the only source of error comes from the splitting which
scales like Oð�t2Þ (second order accuracy). We refer the
reader to [11] for the numerical analysis of the scheme.
Other schemes where the error scales like Oð�t3Þ can also
be obtained [6,11]. Most importantly, it does not spoil the
unitarity of the scheme for any value of the time step: this is
required to conserve the probability density (L2 norm).
Full details of the algorithm can be found in [6] and slightly
different versions are in [2,12].

General operator-splitting framework.—The QLB was
derived on heuristic grounds, based on a intuitive analogy
between a genuinely quantum variable, the particle spin,
and a discrete one, the particle momentum in the lattice
formulation of the Boltzmann equation. Since quantization
is a physical concept while discretization is a numerical
one, it might be argued that the analogy is somewhat
artificial, hence perhaps coincidental and of limited
applicability.

In the following, we shall show that this is not the case:
QLB can be shown to fall within the general theory of
operator splitting, as applied to the Dirac equation.

This might have potentially deep implications for both
classical and quantum computing, because it implies that,
by splitting time along the three spatial directions, and
augmenting the stream-collide dynamics with proper
global rotations, quantum information (the Dirac wave
function) propagates in space-time as a classical statistical
process (Boltzmann distribution). It would be of great
interest to explore whether such insight could be used to
simulate the Dirac equation on trapped-ion analogue
computers based on the QLB dynamics [13].

The starting point of the general operator splitting theory
is the formal solution of the Dirac equation given by

c ðtnþ1Þ ¼ T exp

�
�i

Z tnþ1

tn

HðtÞdt
�
c ðtnÞ (13)

c ðtnþ1Þ ¼ e�i�tðHðtnÞþT Þc ðtnÞ; (14)

whereHðtÞ is the Dirac Hamiltonian, T is the time-ordering

operator, andT ¼ i@tn
 ��

is the ‘‘left’’ time-shifting operator.

The second form of the solution was obtained in [14] and
constitutes a great starting point for deriving approxima-
tion schemes. Then, the operator-splitting method consists
of decomposing the Hamiltonian asHðtÞ ¼ P

N
j¼1 HjðtÞ and

approximating the evolution operator in Eq. (14) by a
sequence of exponentials in the form

c ðtnþ1Þ �
YNseq

k¼1

�
e�is

ðkÞ
0
�tT

YN
j¼1

e�is
ðkÞ
j �tHjðtnÞ

�
c ðtnÞ; (15)

where the coefficientsNseq 2 N and sðkÞj 2 R are chosen to

obtain an approximation with a given order of accuracy. It
is then straightforward to conclude that the QLB scheme,
shown in Eq. (12) and in Eqs. (3)–(6), corresponds to a
particular decomposition of the Hamiltonian [15] and to a
specific realization of Eq. (15).
The conclusion is far-reaching; the Majorana represen-

tation exposes a concrete connection between the (discrete)
Boltzmann equation and the Dirac equation in Majorana
form. As a result, the information contained in the quantum
relativistic four-spinor c ðt;xÞ can be processed on entirely
classical terms, i.e., free streaming along constant direc-
tions and local collisions, complemented with diagonaliza-
tion steps to keep speed and spin constantly aligned.
Remarkably, the scheme is also viable for prospective
quantum computer implementations [7–9,16].
The QLB has been applied to a variety of quantum wave

problems, mostly in the nonrelativistic context [17–19].
Here we present a new application to an important non-
linear relativistic problem, namely, the Dirac equation
augmented with Nambu–Jona-Lasinio dynamic symmetry
breaking terms.
NJL-Dirac equation.—The NJL model was prompted

by a profound analogy between the Bardeen-Cooper-
Schrieffer theory of superconductivity and chiral symme-
try breaking in relativistic quantum field theories [20,21]
and it has served ever since as a model paradigm to study
symmetry-breaking phenomena in both fields.
The NJL Lagrangian reads [20]

LNJL ¼ �c ði��@� �mÞc þ g

2
½ð �c c Þ2 � ð �c�5c Þ2�: (16)

This corresponds to the free-particle Dirac Lagrangian,
plus an interaction term, driven by the coupling parameter
g. This coupling term reflects four-fermion interactions, in
direct analogy with the BCS theory of superconductivity.
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By imposing the chiral symmetry, the NJL Lagrangian
should not present any explicit bare mass term, so we set
m ¼ 0. However, the NJL dynamics leads to the formation
of a chiral condensate, corresponding to an effective mass
term and a spontaneous symmetry breaking of the chiral
symmetry. Much of the current interest in the NJL model is
motivated by the fact that it serves as a phenomenological
model of quantum chromodynamics (for a full account,
see [22]).

The associated equation of motion reads (see the
Appendix)

ð@tþ�a@aþ im�Þc ¼ ig�½ðc y�c Þ � ðc y��5c Þ�5�c :

(17)

A solution of this equation is required for the quantum
study of this model, in the mean-field approximation.

The space-time discretization of the NJL-Dirac equation
can be cast in the standard QLB format by adding the
nonlinear term into the collision step as in the case of the
electromagnetic field, by replacing C! CNJL. The colli-
sion step becomes

c ðcÞðtnþ1Þ ¼ CNJLc
ðcÞðtnÞ

¼ T exp

�Z tnþ1

tn

dtMNJLðtÞ
�
c ðcÞðtnÞ; (18)

MNJLðtÞ � �i�½m� g�SðtÞ� � g�AðtÞ�; (19)

where �S � c y�c and �A � ic y��5c depend on time,
hence the time-ordering operator, and � � ��5. The time
ordering can be approximated by using Eqs. (14) and (15):
the ensuing ordinary exponential can be converted exactly
to a 4� 4 unitary matrix CNJL. A similar treatment of the
nonlinear term, albeit using spectral methods, can be found
in [23].

Numerical application.—As an application of the QLB
scheme, we simulate the emergence of a dynamic fermion
mass as a result of the spontaneous breaking of the chiral
symmetry of the NJL equation.

For this purpose, let us consider an initial condition
given by the following Gaussian minimum-uncertainty
wave packet,

c ðt ¼ 0; zÞ ¼ Sy

�Cue
ikz þ Cde

�ikz

Cue
ikz � Cde

�ikz

Cue
ikz þ Cde

�ikz

Cue
ikz þ Cde

�ikz

2
666664

3
777775

e�z2=4�2

ð2��2Þ1=4 ; (20)

centered about z ¼ 0, with initial width �. Let ! ¼ k be
the initial energy of the wave packet. The coefficients Cu

andCd obey the condition 2C
2
u þ 2C2

d ¼ 1, so that c yc ¼
jG0j2. Moreover, an asymmetry can be set by tuning the
ratio Cu=Cd � � � 1.

We analyze our numerical results for the case of m ¼ 0,
which ensures that the axial current is conserved by the

free part of the equation, as a function of the coupling
coefficient g. For this test, the following parameter setting
is used: k ¼ 0:006, � ¼ 48, Cu ¼ 1:177, and Cd ¼ 0:784.
Numerical results for �ðzÞ ¼ jc j2 at times t ¼ 10, 50, 100,
and 200, for the case g ¼ 0, 1, and 2, are shown in Fig. 1.
This calculation requires 200 time steps (for a mesh size

of 1024 lattice sites) and about 0.01 CPU seconds on a
standard PC. This amounts to a processing speed of about
20MLUPS (million lattice updates per second), which is in
line with the performance of lattice Boltzmann schemes for
classical fluids. Since the latter is known to be very com-
petitive, the same conclusion is likely to hold for the
quantum case. A final statement in this direction must be
left to detailed head-on comparison between QLB and
state-of-the art numerical methods for the Dirac and
Schrödinger equations.
From Fig. 1, a symmetry breaking between the left- and

right-moving wave packets is clearly seen at increasing
values of g. The generation of a dynamic mass is expected
to reflect into a slowing-down of the group velocity of the

wave packets, according to ðvgroup=cÞ¼ðk=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm02
p

Þ<1,

where m0 ¼ �g�S is the dynamic mass of zero-rest mass
particles. Indeed, since the initial condition is symmetric
with respect to 1$ 2 exchange, the quantity �A is initially
zero, and remains such all along the simulation.
The results can be checked against the analytic solution

to Eq. (17) in 1D and for the case of small g [24], which
gives vmean=c ’ 1� 0:04gþOðg2Þ at early times. It can
be checked (not shown for space limitations) that this is
consistent with the numerical results in Fig. 1.
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FIG. 1 (color online). � ¼ jc j2 at times (a) t ¼ 10, (b) t ¼ 50,
(c) t ¼ 100, and (d) t ¼ 200 for g ¼ 0, 1, and 2. The figure
shows the separation of the left- and right-moving wave packets
in the course of the evolution. The noninteracting case shows no
deformation of the Gaussian profile, as expected, while the
interacting case leads to a slowdown and deformation of both
wave packets.
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The same phenomenon can be simulated in two dimen-
sions, and the details shall be presented in a future, length-
ier publication.

Extending the above work to the case of quantum many-
body systems and nonlinear multidimensional quantum
field theory [25] represents an outstanding challenge for
future research in the field.

Appendix: NJL-Dirac equation using Pauli representa-
tion.—From the NJL Lagrangian of Eq. (16), the associated
equation of motion Eq. (17) is derived as follows. Variation
of Eq. (16) against �c delivers

ði��@� �mÞc þ g½ð �c c Þc þ ð �c�5c Þ�5c � ¼ 0; (A1)

where �5 � i�0�1�2�3 and �c ¼ c y�0.
The actual definition of the gamma matrices depends on

the specific chosen representation. By using Pauli-Dirac
representation, �i matrices are defined as follows [26]:

�0 ¼ �; �i ¼ ��i; with i ¼ 1; . . . ; 3; (A2)

where � and �i are the standard Dirac matrices.
Inserting these definitions into Eq. (A1), yields

ð�@tþ��a@aþ imÞc ¼ ig½ðc y�c Þ � ðc y��5c Þ�5�c :

(A3)
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