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We study one-dimensional quantum walks in a homogenous electric field. The field is given by a phase

which depends linearly on position and is applied after each step. The long time propagation properties of

this system, such as revivals, ballistic expansion, and Anderson localization, depend very sensitively on

the value of the electric field, �, e.g., on whether �=ð2�Þ is rational or irrational. We relate these

properties to the continued fraction expansion of the field. When the field is given only with finite

accuracy, the beginning of the expansion allows analogous conclusions about the behavior on finite time

scales.
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In this Letter we analyze the surprisingly rich longtime
behavior of a simple quantum lattice system, a one dimen-
sional discrete time quantum walk in a homogenous
electric field. This system has recently been realized ex-
perimentally [1]. Here we provide the theoretical explana-
tion for the phenomena observed in [1], covering also time
scales much longer than those accessible by current-day
experiments. The most remarkable feature of this system is
that its longtime behavior depends dramatically on whether
the key parameter, the electric field, is rational or irrational.
This appears paradoxical, because the difference between
these number classes would require infinite experimental
precision. Yet, as reported in [1], a qualitative difference
can be seen. We will give a very detailed resolution of this
apparent paradox, showing exactly which features of the
field have predictive value on which time scales, and how
the precise nature of the field is reflected in the infinite time
behavior.

Similar phenomena involving rational vs irrational pa-
rameters are known from systems such as the quantum
kicked rotator [2,3] and the propagation of quantum parti-
cles in quasiperiodic potentials [4]. Another famous case is
the Hofstadter butterfly [5], which pertains to a two dimen-
sional lattice system in a magnetic field. The crucial pa-
rameter in this case is the magnetic flux per unit cell. This
system is analyzed in terms of the one dimensional
Mathieu equation, whose variants have recently been ana-
lyzed with great success in terms of certain dynamical
systems [6]. The crucial role of the continued fraction
expansion [7] for our work echoes its role in the theory
of chaotic dynamical systems (see, e.g., [8]), and also in the
Shor algorithm [9], where it is used to identify a particular
fraction.

Quantum walks have recently attracted much attention
as a computational resource [10–15] as well as a model of
discrete-time evolutions of single particles with internal
degrees of freedom [16–20], which in particular provides a

model to describe the energy transfer in light harvesting
complexes [21–23]. In addition, it has been shown that
quantum walks exhibit a rich variety of quantum effects
such as Landau-Zener tunneling [24], the Klein paradox
[25], topological phases [26,27], and Bloch oscillations
[24] as well as the formation of molecules for two interact-
ing particles each performing a quantum walk [28].
Furthermore, quantum walks have been experimentally
realized in such diverse physical systems as neutral atoms
in optical lattices [29], trapped ions [30,31], wave guide
lattices [32,33] and light pulses in optical fibers [34,35] as
well as single photons in free space [36].
Quantum walks in external ‘‘simulated’’ fields play a

crucial role in the endeavor of building a quantum simu-
lator for solid state models, in particular of magnetic
systems such as Hubbard models [37,38]. They also allow
the realization of nontrivial symmetry classes, for example,
by breaking time reversal invariance. The recent classifi-
cation of topological phases [26,27] based on such sym-
metries shares with the present study the phenomenon of
very flat bands in the dispersion relation of a walk.
Exactly the same system as ours has been studied mostly

in the rational case, namely, numerically in [39,40] and by
exact diagonalization on a finite ring [41]. In the irrational
case Anderson localization [42–44] is conjectured in [41].
We agree that this is possibly the typical case assuming the
crucial parameter, here referred to as the electrical field,�
to be a uniformly distributed random number, but we also
exhibit irrational cases with a quite different behavior.
Most extremely, we show the possibility of ‘‘hierarchical
motion,’’ which is characterized by an infinite hierarchy of
time scales in which ever more perfect revivals alternate
with ever larger ballistic excursions.
An overview of the qualitatively different infinite time

behaviors is given in Table I. Some of the terminology will
be explained in detail in the respective sections. The quasi-
energy spectrum refers to the spectral properties of the
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unitary walk operator in the sense of, e.g., [45],
Chap. VII.2. The properties in the table depend on the
exact value of � or, equivalently, on its entire continued
fraction representation. For an experimentally given field
with finite accuracy, only an initial segment of this expan-
sion can be reliably determined. Depending on how one
continues the expansion, any of the three classes is com-
patible with such data. However, the behavior on a finite
time scale can be reliably predicted from the data. As in the
infinite case, the important input is the size of the contin-
ued fraction terms ci, which, in particular, determine the
quality of revivals as explained below.

Definition of the system.—For definiteness and to fix
notations let us explicitly define the class of systems under
investigation. We consider particles on the 1D lattice Z
with a two dimensional space of internal degrees of free-
dom. Basis vectors are thus jx; �iwith x 2 Z and� ¼ �1.
The state dependent shift is defined by Sjx; �i ¼
jxþ �;�i. We consider, moreover, a coin operation
Cjx;�i¼P

�C��jx;�iwith a fixed matrixC 2 SUð2Þ, i.e.,

C ¼ a b
� �b �a

� �
(1)

with jaj2 þ jbj2 ¼ 1. A standard case is the Hadamard

walk with a ¼ b ¼ 1=
ffiffiffi
2

p
. The third element will be a

phase shift depending linearly on x, given by the operator
expðix̂�Þjx; �i ¼ expðix�Þjx; �i. The constant � is
referred to as the electric field. The overall time step is
then given by

W� ¼ eix̂�CS: (2)

Rational approximations.—We will analyze the behav-
ior of W� and its iterations by comparison with similar
walks W�0 , where �0 ¼ 2�n=m is a rational approxima-
tion to �. The basic tool is an estimate for the difference
between two states evolved from the same initial state by
walks with slightly different fields � and �0. As an initial
state we choose a unit vector c which is nonzero only for
lattice sites x with jxj< L. Then for one step kW�c �
W�0c k �maxjxj�Lj expðix�Þ � expðix�0Þj � Lj���0j.
After t steps, adding the deviations, and observing that the
localization region of c increases by 1 in every step we get

kWt
�c �Wt

�0c k � t

2
ðtþ 2L� 1Þj���0j: (3)

So, for example, if�0 approximates� to within " ¼ 10�4,
and the particle starts at the origin (L ¼ 1), we can use

Wt
�0c to predict the behavior of Wt

�c for up to "�1=2 �
100 steps. The square root makes decimal approximations
(or approximations in any other digital base) quite useless.
Instead, one can look for denominators m such that the
approximation error is not of order m�1, as can always be
trivially achieved, but of order m�2 or better.
The systematic way to generate such approximations is

the so-called continued fraction expansion [7]. For a num-
ber x ¼ x0 � 0 it is computed by taking the integer part
c0 ¼ bx0c, setting x1 ¼ 1=ðx� c0Þ, and repeating this pro-
cess for x1 to get c1, etc. The number x is then uniquely
characterized by the sequence (c0; c1; . . . ). One gets an
explicit sequence of approximating rationals ni=mi, where
the denominators mi and numerators ni both satisfy the
recursion ri ¼ ciri�1 þ ri�2 with initial values n0 ¼ c0,
n�1 ¼ 1, m0 ¼ 1, m�1 ¼ 0. This is equivalent to an itera-
tion in which at step i the denominator ci is replaced by
ci þ 1=ciþ1, leading to the typographical nightmare from
which the continued fractions derive their name. The
desired approximation of x of order 1=m2

i is stated as

��������x�
ni
mi

��������<
1

ciþ1m
2
i

: (4)

Therefore, when �0 ¼ 2�ni=mi is a continued fraction
approximation of �, the error in (3) is of order ðt=miÞ2,
so the ith approximation is valid roughly on the time scale
of the denominator mi, and correspondingly longer if the
next term ciþ1 is large.
Intuitively, Eq. (4) says that large terms ci correspond to

especially good approximations. For example, the contin-
ued fraction expansion of � begins with (3,7,15,. . .)
and the second approximant � � 22=7 has an error
<1=ð15� 49Þ � 10�3. In this sense the ‘‘most irrational

number’’ is the golden ratio ’ ¼ ð1þ ffiffiffi
5

p Þ=2 with expan-
sion (1,1,1,. . .).
The rational case: Revivals and ballistic expansion.—

Let us begin with the rational case, in which� ¼ 2�n=m,
where it is understood that n, m do not have common
factors. The phase factor � ¼ expði�Þ is then a primitive
mth root of unity, i.e., �m ¼ 1, but this holds for no smaller
power. There are two ways to reduce the analysis to the
case of standard, translationally invariant walks [18,19,46].
One is to use the fact that the field phase factor is periodic

TABLE I. Overview: The connection between the properties of �, its continued fraction coefficients ci, propagation, and the
spectrum of the unitary evolution operator. Detailed explanations are found in the subsections for the respective columns.

Rational Almost rational Very irrational

Continued fraction expansion Terminates ci ! 1 rapidly ci bounded
Propagation Ballistic with revivals Hierarchical Localized, almost periodic

Quasienergy spectrum Absolutely continuous Singular continuous Dense set of eigenvalues

Status Proved Proved Numerical evidence
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with period m, and hence always group m sites together
into a ‘‘supercell’’ of ‘‘coin dimension’’ 2m. This spatial
regrouping is carried out in [1], giving a band structure
with a 2m-branched dispersion relation. Here we will use
instead a temporal regrouping, i.e., consider the operator
Wm

�, which likewise commutes with translations. This is a

walk with two coin states, but allowing for steps over up to
m sites. The key fact about this walk is that, even for
moderately large m, it hardly moves, in the sense that the
walk operator is close to the identity operator (up to a
phase). Phrased as a statement about the ungrouped walk
W�, we get a revival of the initial state after m steps. The
precise statement is the following revival theorem:

kW2m
� þ 1kop ¼ 2jajm m odd (5)

kWm
� þ ð�1Þm=21kop ¼ 2jajm=2 m even; (6)

for � ¼ 2�n=m. Hence, for odd m any initial state is
reproduced after 2m steps with accuracy (trace norm dis-
tance) 4jajm, which is exponentially small in m, since
jaj< 1, except in trivial cases. For the Hadamard walk

we get an error 2�m=2. The different behavior of the even
and odd cases is to be expected for coined walks, since the
amplitude for no jump or a jump by an even distance is
zero. Hence, the revival of a state localized at a point is
only possible after an even number of steps.

The proof of the revival theorem is given in the
Supplemental Material [47], and could also be based on
the eigenvalues provided, without proof, in [41]. It yields
also the dispersion relations for Wm

�, concretely

cos!�ðkÞ¼
�
am cosðmkÞ m odd

�am cosðmkÞþð�1Þm=2þ1ð1�jajmÞ m even:

(7)

The upshot is that the spectrum is absolutely continuous,
and transport is ultimately ballistic. However, because of
the revivals it may take a very long time for the ballistic
regime to be reached. This is shown in Fig. 1 for walks
starting at the origin. In each case we show two aspects as a
function of time, the root mean square deviation of position

�ðtÞ ¼ hx2i1=2 and the probability pðtÞ of return to the
origin. Perfect revivals are identified by the conditions
�ðtÞ ¼ 0, respectively pðtÞ ¼ 1. The two fields chosen in
the figure are �1 ¼ 2�=5, for which (5) predicts a fairly
weak revival at t ¼ 10 (pð10Þ � 0:64), which rapidly goes
over into ballistic expansion. The envelope of pðtÞ is well
approximated by a Bessel function [41]. The denominator
�2 ¼ 2�� 51=256 for the second field is much larger, so
the revival predicted by (6) is exponentially sharper:
pð256Þ � 1� 10�19. The full evolution up to t ¼ 256
therefore repeats roughly 1019 times, i.e., until the revival
errors accumulate sufficiently, to make way for ballistic
expansion. This would be true for all fields of the form
� ¼ 2�n=256, independently of the numerator n.
However, the evolution up to t ¼ 256 does depend on the

numerator [39]. We can get some information about it from
a ‘‘rational approximation of the rational’’ 51=256: Its
continued fraction sequence is ðc0; c1; c2Þ ¼ ð0; 5; 51Þ and
1=5 ¼ �1=ð2�Þ. Therefore, we know that the initial seg-
ments of these evolutions coincide. More precisely, from
(3) we get kWt

�2
c �Wt

�1
c k � tðtþ 1Þ=t20 with t0 � 20.

The comparison for the displayed quantities is even more
favorable, as shown in the inset of Fig. 1.
The almost rational case.—The same idea, i.e., combin-

ing (3) and (4), can be used with the revival theorem (5),
respectively, (6) to get revival estimates for arbitrary
irrational �:

kW2mi

� c þ c k � 4�

ciþ1

þO
�
L

mi

�
mi odd

kWmi

� c þ ð�1Þmi=2c k � �

ciþ1

þO
�
L

mi

�
mi even:

(8)

That is, if ci�þ1 ! 1 along some subsequence i� we get an

infinite sequence of sharper and sharper revivals at the
corresponding times mi� or 2mi� . From each of these

revivals we also get a more precise repetition of the entire
history up to that point. This shows that the walk operator
now has no absolutely continuous spectrum, since for
initial vectors in the absolutely continuous subspace the
expectation for any finite dimensional projection goes to
zero by the Riemann-Lebesgue lemma.
When the sequence (ci) grows sufficiently fast, we get

hierarchical motion on a hierarchy of time scales mi, each
of which is associated with one approximation ni=mi.
Sharp revivals, up to errors "i with "i ! 0, alternate with
larger and larger excursions. These are given by intervals Ii

FIG. 1 (color online). Revivals for two walks with rational
fields. Top �1 ¼ 2�=5 and bottom �2 ¼ 2�� 51=256. In
both cases the right panel shows the root mean square of the
position, and the left panel the probability pðtÞ to be back at the
origin at time step t. Since �1 ��2 � 5� 10�3 the initial
segments (t < 100) of the top and bottom graphs almost coincide
(see black frames and inset). The revivals predicted by the
revival theorem are at t ¼ 10 and t ¼ 256, respectively.
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such that every initial state in Ii leaves the interval at the
prescribed time with probability close to 1. The sequences
"i and Ii can be prescribed arbitrarily. This implies singular
continuous spectrum. Details of the argument are given in
the Supplemental Material [47].

The very irrational case.—Numbers with bounded con-
tinued fraction sequence ci do not have exceptionally good
rational approximations. For example, for the golden ratio
’ with ci ¼ 1 for all i, the bound (8) makes no revival
predictions at all. Figure 2 shows the behavior of root mean
square position and return probability for � ¼ 2�’. It
shows many peaks, not just at the continued fraction
denominators, and no tendency for transport or decaying
return probability. This is precisely the behavior one
would expect from a quantum system with pure point
spectrum. Indeed a numerical study readily confirms this
guess.

More precisely, we take the system with periodic bound-
ary conditions, diagonalize it, and pick the eigenfunction
with the smallest hx2i. This eigenfunction decays exponen-
tially (as long as one does not approach the boundary), and
converges as the ring size is increased. The same function is
obtained by iterating the transfer matrices [43] for the solu-
tion of the eigenvalue equation W�c ¼ expði!Þc . The
quasienergy ! is chosen as ! ¼ �=2 as this ensures the
symmetry of the eigenfunctions around the origin.
Therefore, if we start with an arbitrary vector at some very
negative site x ¼ �N, the iteration will naturally pick the
expanding branch, but on passing x ¼ 0will decrease again
to reach exactly the starting value at x ¼ þN. When N is
large, this computation has to be carried out with high
numerical precision (see Fig. 3). Setting the function to be
zero for jxj>N yields an approximate eigenfunction,which
solves the eigenvalue equation with a precision (e.g.,
2400 digits for the case shown in Fig. 3), which in
ordinary numerical work would be considered extraordinar-
ily high.

Knowing one exact eigenfunction is knowing a complete
set, since we can generate the required number per site by
shifts and staggered sign changes c ðxÞ � ð�1Þxc ðxÞ. We
emphasize that in spite of the high precision the numerical
evaluation does not prove the eigenvalue equation, since

for larger N the behavior could be different, and indeed
will be different for rationals close enough to�. Hence, we
have shown Anderson localization only for all practical
purposes, meaning for runs with less than �108000 steps,
which for nanosecond steps will be incomparably larger
than the age of the Universe.
We conjecture in analogy to the case of quasiperiodic

potentials in the Hamiltonian setting that localization holds
for almost all values of� [48]. In addition to the numerical
evidence this is supported by the observation that the
localization length is constant, namely, exactly log102 �
0:301 03 for all irrational fields. This will be subject of
future investigations. We note that this conjecture does
not contradict the markedly different behavior for rational
and almost rational �, since these sets are of measure
zero.
Summary and outlook.—We have established three typi-

cal kinds of longtime behavior of electric quantumwalks as
a function of the field �. An arbitrarily small change in �
may change the type of propagation behavior in the infinite
time limit. Nevertheless, on a given time scale one canmake
precise predictions in terms of an initial segment of
the continued fraction approximation of �. Anderson lo-
calization holds for very irrational numbers, and we con-
jecture that it also holds for random numbers � with
probability 1 with a nonrandom localization length. Of the
methods developed here, the general approximation tech-
nique is relevant to arbitrary quantum walks. The trace
formula has analogs for 2D and 3D quantum walks in
magnetic fields (work in progress), also leading to flat
bands.
This project was supported by the DFG (Forschergruppe

635), the ERC Grant DQSIM, and NRW
Nachwuchsforschergruppe ‘‘Quantenkontrolle auf der
Nanoskala.’’ A.A. and M.G. also acknowledge support
from the Alexander von Humboldt Foundation and the
BCGS, respectively.
Note added in proof.—Most recently, Ref. [49] was

published, where the authors consider a space and time
dependent quantum walk and find in the continuous limit
the Dirac equation with an artificial electric field.

FIG. 2 (color online). Root mean square of position and return
probability for the golden ratio field � ¼ �ð ffiffiffi

5
p � 1Þ. There are

many returns, and the initial state has a substantial overlap with a
bound state, so the return probability is bounded away from zero.
Vertical lines: Times appearing in the revival estimate, even
though the estimate is trivial.

FIG. 3 (color online). Position probability distribution for the
eigenfunction of the walk with � ¼ 2�’. Left: Unscaled plot.
Right: Logarithmic plot over the range [�N, N] for which the
procedure described in the text was applied. Floating point
accuracy for this computation was set to 8000 decimal digits.
The slope of the right graph is the inverse Anderson localization
length � 0:301.
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