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Quantum state tomography is currently the standard tool for verifying that a state prepared in the lab is

close to an ideal target state, but up to now there have been no rigorous methods for evaluating the

precision of the state preparation in tomographic experiments. We propose a new estimator for quantum

state tomography, and prove that the (always physical) estimates will be close to the true prepared state

with a high probability. We derive an explicit formula for evaluating how high the probability is for an

arbitrary finite-dimensional system and explicitly give the one- and two-qubit cases as examples. This

formula applies for any informationally complete sets of measurements, arbitrary finite number of data

sets, and general loss functions including the infidelity, the Hilbert-Schmidt, and the trace distances. Using

the formula, we can evaluate not only the difference between the estimated and prepared states, but also

the difference between the prepared and target states. This is the first result directly applicable to the

problem of evaluating the precision of estimation and preparation in quantum tomographic experiments.
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The development of science has always been supported
by the development of precise and accurate techniques of
measurement and control. Measurement outcomes are
affected by statistical and systematic noise, and evaluating
the measurement precision under these errors is a funda-
mental aspect of those techniques. In physics, now more
than ever, high-precision experiments are required for test-
ing whether a theoretical model is suitable for describing
nature. A popular figure of merit for this precision is the
standard deviation, but, in more demanding experiments, a
different figure of merit, called a confidence level, is also
used. For example, in the search for the standard model
Higgs boson, the ATLAS group at the LHC reported
an experimental result that narrowed the range of the
possible Higgs boson mass at the 95% confidence level
[1]. This shows the confidence level to be a compelling
benchmark for justifying whether an experimental result is
reliable or not.

Quantum information is another field where highly pre-
cise measurement and control are necessary. It has been
shown theoretically that by using ‘‘quantumness,’’ we can
perform more efficient computations [2] and more secure
cryptography [3] compared to existing protocols. In the
practical implementation of these new protocols, highly
precise preparation and control of specific quantum states
are required. Quantum tomography is a standard tool in
current quantum information experiments for verifying a
successful realization of states and operations [4]. Let us
consider the case of state preparation, where �� denotes a
target state that we are trying to prepare in the lab. In real
experiments, the true prepared state � does not coincide
with �� because of imperfections. We wish to evaluate the
precision of this preparation, that is, the difference between
�� and�—however, we do not know�. Instead, we perform

quantum state tomography; let�est
N denote an estimate of the

state made from N sets of data obtained in a tomographic
experiment. To date, the best we have been able to do is to
evaluate the difference between �� and �est

N (see Fig. 1), but
even if the difference is small, it does not guarantee that the
prepared state� is close to the target state��, because�est

N is
given probabilistically and can deviate from � when N is
finite. In this context, we refer to the difference between�est

N

and � as the precision of the estimation.
There are many proposals for evaluating the precision of

estimation [5–7] and preparation [8,9]. An approach using
confidence regions is one currently popular example.
Unlike standard quantum tomography, in this approach
the estimate is not a point but a region in state space. In
Refs. [5,6], confidence region estimators for quantum state
estimation were proposed, and the region’s volume was
analyzed. The confidence level can be used for evaluating
the precision of region estimates, but these cannot be
directly applied for evaluating the precision of point

FIG. 1 (color online). Three-way relationship: �� is a target
state we want to prepare, � is the true prepared state, and �est

N is

an estimate made from N tomographic data sets.
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estimates. In Ref. [7], two state estimators were proposed
that use random sampling of Pauli measurements. Called
compressed sensing, the authors proved that the estimates
are close to the true state with high probability. However,
the formulae derived for evaluating the difference between
the estimates and the true state include indeterminate
coefficients, and the value of the difference cannot be
calculated. Therefore, the compressed sensing results are
not directly applicable to the evaluation of the estimation
precision of tomographic experiments. In Refs. [8,9], a
method for estimating the difference between �� and �
as evaluated by the fidelity was proposed. Called direct
fidelity estimation, it avoids point estimates altogether, and
by performing random Pauli measurements it allows the
precision of state preparation to be evaluated. However, the
method is not capable of evaluating the estimation preci-
sion of point estimates. Thus, this remains a crucial prob-
lem in the current theory of quantum tomography.

Here, we give a solution to this problem. We propose a
new point estimator for quantum state tomography in
finite-dimensional systems, and prove that the estimated
states are within a distance � of the prepared state with high
probability. We derive an explicit formula for the confi-
dence level, evaluating how high that probability is. This
formula applies for any informationally complete set of
measurements, for an arbitrary finite amount of data, and
for general loss functions including the infidelity, the
Hilbert-Schmidt, and the trace distances. Importantly, for
a given experimental setup we can calculate the value of
the formula without knowing the true prepared state, and so
the formula can also be used to evaluate the precision of
state preparation. To our knowledge this is the first result
directly applicable to evaluating the precisions of both
estimation and preparation in quantum tomography. We
demonstrate the technique for examples of one- and two-
qubit state tomography.

Preliminaries.—We consider a finite dð<1Þ dimen-
sional quantum system, with Hilbert space H . A state of
the system is described by a density matrix, which is a
positive-semidefinite and trace-one matrix, the space of
which we denote by SðH Þ. Let � 2 SðH Þ denote the
density matrix describing the true prepared state. It is
unknown, and we make no further assumptions on �.
Suppose that N identical copies of the unknown true state,
��N , are available, and we can perform a measurement on
each copy. Our aim is to estimate � from measurement
results. Let � ¼ ð�1; . . . ; �d2�1Þ denote a set of Hermitian
matrices satisfying (i) (tracelessness) Tr½��� ¼ 0 and
(ii) (orthogonality) Tr½����� ¼ 2���. Using this set, a

density matrix can be parametrized as [10,11]

�ðsÞ ¼ 1

d
I þ 1

2
s � �; (1)

where I is the identity matrix and s is a vector inRd2�1. The
matrix and vector are uniquely related as s� ¼ Tr½����.

Positive semidefiniteness of � requires constraints on the
parameter space. Let S denote the set of parameters corre-
sponding to density matrices; S is a convex subset of

Rd2�1. Estimation of � is equivalent to that of s 2 S.
The statistics of a quantum measurement are described

by a positive operator-valued measure (POVM), which is a
set of positive-semidefinite matrices that sum to the iden-
tity. In the standard setting of quantum tomography, we

choose a combination of measurements. Let ~�¼f�ðjÞgJj¼1

denote a finite set of POVMs. Suppose that for estimating �
we independently perform a measurement described

by a POVM �ðjÞ ¼ f�ðjÞ
m gMðjÞ

m¼1 a number nðjÞ of times
(j ¼ 1; . . . ; J). The total number of measurement trials isP

J
j¼1 n

ðjÞ ¼ N. Let us define rðjÞ :¼ N=nðjÞ. Elements of

the POVM can also be parametrized as

�ðjÞ
m ¼ aðjÞm;0Iþ aðjÞ

m � �; (2)

where aðjÞm;0 ¼ Tr½�ðjÞ
m �=d, and aðjÞm;�¼Tr½�ðjÞ

m ���=2. When

we perform the measurement on a system in state �, the
probability that we observe an outcome m is given by

pðmj�ðjÞ; �Þ ¼ Tr ½�ðjÞ
m �� ¼ aðjÞm;0 þ aðjÞ

m � s: (3)

A set of POVMs ~� is called informationally complete (IC)
if it spans the vector space of Hermitian matrices on H
[12]. Such a set allows for the reconstruction of an arbitrary

quantum state, and we will assume that our ~� is always IC.

Let nðjÞm denote the number of appearances of

outcome m in the data from the nðjÞ measurement trials

of �ðjÞ (m ¼ 1; . . . ;MðjÞ); then fðjÞm :¼ nðjÞm =nðjÞ is the rela-
tive frequency. A map from a data set to the space of
interest—in this case, the space of quantum states—is
called an estimator, and an estimation result is called an
estimate. One of the simplest is a linear estimator, �L [13],
defined as a matrix � satisfying

fðjÞm ¼ pðmj�ðjÞ;�Þ; j¼ 1; . . . ; J; m¼ 1; . . . ;MðjÞ:
(4)

The idea is to use the relative frequencies instead of the
unknown true probability distributions. This might seem
natural, but there are two problems. The first problem is

that when ~� is over complete, Eq. (4) might have no
solutions; i.e., we happen to obtain a data set from which
we cannot calculate the estimate. The second problem is
that even if there exists a solution, it can be unphysical, i.e.,
lie outside of SðH Þ. For these two reasons linear estima-
tors are rarely used today. The current standard is a
maximum-likelihood (ML) estimator, which is defined as
the point in SðH Þ maximizing the likelihood function
[14]. By definition, such estimates are always physical.
The asymptotic (N �1) behavior of the confidence level
of a ML estimator is analyzed in Ref. [15], but there have
been no such results for finite data sets.
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A loss function is a measure for evaluating the difference
between two states. We analyze the following three loss
functions:

�HSð�0; �Þ :¼ 1ffiffiffi
2

p Tr ½ð�0 � �Þ2�1=2; (5)

�Tð�0; �Þ :¼ 1

2
Tr ½j�0 � �j�; (6)

�IFð�0; �Þ :¼ 1� Tr

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0

q
�

ffiffiffiffiffi
�0

qr #
2

; (7)

called the Hilbert-Schmidt (HS) distance, the trace dis-
tance (T), and the infidelity (IF), respectively. The trace
distance and the infidelity are most often used.

Results.—Instead of ML, we propose a new estimator
�ENM, where ENM is extended norm minimization. To
define it, we first introduce an intermediate estimator
�LLS, a linear least squares (LLS) estimator [16]. Let us
define pð�Þ and fN as vectors with (j, m)th element

pðmj�ðjÞ; �Þ and fðjÞm , respectively. Define �LLS as

�LLS
N

:¼ argmin
�;�¼�y ;
Tr ½��¼1

kpð�Þ � fNk2: (8)

The range of the minimization is restricted by the
Hermiticity and trace-one conditions, but positive semi-
definiteness (� � 0) is not required. Therefore, the esti-
mates can be unphysical. Let us define a0 as a vector with

(j, m)th element aðjÞm;0 and A as a matrix with [(j, m), �]th

element aðjÞm;� (� ¼ 1; . . . ; d2 � 1). When ~� is IC, A is full
rank and the left-inverse matrix A�1

L ¼ ðATAÞ�1AT exists.
Then the minimization in Eq. (8) has an analytic solution,
and the LLS estimate of the Bloch vector, sLLSN , is given as

s LLS
N ¼ A�1

L ðfN � a0Þ: (9)

The LLS estimate of a density matrix is calculated �LLS
N ¼

�ðsLLSN Þ. Using �LLS, we define the new estimator �ENM as

�ENM
N

:¼ argmin
�02SðH Þ

k�0 � �LLS
N k2: (10)

We call �ENM an extended norm-minimization estimator
[17]. Again, the estimates are always physical by
definition.

The following theorem establishes that the ENM esti-
mates are close to the true prepared state with high
probability.

Theorem 1 (confidence level of ENM estimator).—

Suppose that ~� is IC. Then for the arbitrary true density

matrix � 2 SðH Þ, the set of positive integers nðjÞ satisfy-
ing

PJ
j¼1 n

ðjÞ ¼ N, and the positive number �,

�ð�ENM
N ; �Þ � � (11)

holds with probability at least

C :L: :¼ 1–2
Xd2�1

�¼1

exp

�
� b

c�
�2N

�
; (12)

where b is determined by our choice of the loss function as

b :¼

8>><
>>:
8=ðd2 � 1Þ if � ¼ �HS

16=dðd2 � 1Þ if � ¼ �T

4=dðd2 � 1Þ if � ¼ �IF

; (13)

and c� are determined by our choice of the measurement
setting as

c� :¼ XJ
j¼1

rðjÞfmax
m

½A�1
L ��;ðj;mÞ �min

m
½A�1

L ��;ðj;mÞg2: (14)

We call C.L. in Eq. (12) the confidence level of �ENM at the
(user-specified) error threshold �.
We sketch the proof in two steps, with the details shown

in the Supplemental Material [18]. First, we consider the
Hilbert-Schmidt distance case and analyze the probability
that we obtain estimates deviating from the true density
matrix by more than the error threshold �. We call this
probability the estimation error probability with respect to
� ¼ �HS at the error threshold �. By using known results
in convex analysis, we prove that the estimation error
probability of �ENM is smaller than that of �LLS. Second,
we derive an upper bound on the estimation error proba-
bility of �LLS. In the derivation, we reduce the analysis of
the probability for multiparameter estimation to that of
one-parameter estimation and derive a �-independent
upper bound on the probability with the Hoeffding’s tail
inequality [19]. The result of the first step ensures that this
is also an upper bound on that of �ENM. The confidence
level for �HS is given by one minus the upper bound of the
estimation error probability. The confidence levels of �T

and�IF are derived by combining that of�HS with inequal-
ities between these loss functions.
Analysis.—The most important point in Theorem 1 is

that Eq. (12) is independent of the true state �. Therefore,
we can use it to evaluate �ð��; �Þ without knowing �.
Suppose that we choose a loss function � satisfying the
triangle inequality. Then, by Theorem 1, we have

�ð��; �Þ � �ð��; �ENM
N Þ þ �ð�ENM

N ; �Þ (15)

� �ð��; �ENM
N Þ þ �; (16)

where Eq. (16) holds at the confidence level in Eq. (12).
Thus, we can calculate the value of the rhs of Eq. (16)
without knowing �. In tomographic experiments, the infi-
delity, [or the fidelity Fð�0; �Þ :¼ 1� �IFð�0; �Þ], is a
popular loss function. It does not satisfy the triangle
inequality, but it is related to the trace distance by
�IFð�0; �Þ � 2�Tð�0; �Þ [20]. Thus, we obtain

�IFð��; �Þ � 2f�Tð��; �ENM
N Þ þ �g; (17)
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Fð��; �Þ � 1–2f�Tð��; �ENM
N Þ þ �g; (18)

where Eqs. (17) and (18) hold at C.L. for �T.
Consider a k-qubit system and suppose that we make the

three Pauli measurements with detection efficiency � on
each qubit. There are 3k different tensor products of Pauli
matrices (J ¼ 3k), and suppose that we observe each
equally n :¼ N=3k times. When we choose � ¼ �T, we
have

C :L:ðkÞ ¼ 1–2
Xk�1

l¼0

3k�l k
l

� �
exp

�
� 2

22k � 1

�2ðk�lÞ

3k�l
�2N

�
:

(19)

The details of this derivation are explained in the
Supplemental Material [18]. Figure 2 shows plots of
Eq. (19) for the one-qubit (k ¼ 1) and two-qubit (k ¼ 2)
cases in Figs. 2(a) and 2(b), respectively. The error thresh-
old is � ¼ 0:07 and detection efficiency is � ¼ 1, 0.9, 0.8.
Both panels indicate that smaller detection efficiency
requires a larger number of prepared states. The plots tell
us the value of N sufficient for guaranteeing a fixed con-
fidence level. For example, if we want to guarantee 99%
confidence level for � ¼ 0:07 in one-qubit state tomogra-
phy with � ¼ 0:9, Fig. 2(a) indicates that N ¼ 7500.

In Ref. [21], an efficient ML estimator algorithm is
proposed for quantum state tomography using an IC set
of projective measurements with Gaussian noise whose
variance is known, and numerical results for k-qubit
(k ¼ 1; . . . ; 9) state tomography indicate that the computa-
tional cost would be significantly lower than that of stan-
dard ML algorithms. In general, a ML estimator is different
from the ENM estimator, but, in the setting considered in
[21], the ML estimator is a specific case of an ENM
estimator, which is defined for general IC measurements.
Despite this generality, we find that their efficient algo-
rithm can be modified and used for our ENM estimates

[22]. Additionally, Theorem 1 shows that the ENM esti-
mator can be used without assuming projective measure-
ments or Gaussian noise.
It is natural to ask if instead of performing two sequen-

tial optimizations as in the ENM case one performs a single
constrained optimization. This is well known in classical
statistics and was applied to a quantum estimation problem
in Ref. [23]. Define a constrained least squares (CLS)
estimator

�CLS
N

:¼ argmin
�02SðH Þ

kpð�0Þ � fNk2; (20)

which always exists and is always physical. Using nearly
the same proof as in Theorem 1, we can derive a confidence
level for �CLS. The result is equivalent or smaller than
Eq. (12)—the details and a comparison to �ENM are shown
in the Supplemental Material [18]. Although in some cases
the confidence levels coincide, in order to calculate CLS
estimates we need to solve the quadratic optimization
problem under inequality constraints, which the ENM
case avoids.
Summary.—We considered quantum state tomography

in arbitrary finite dimensional systems, proposing a new
point estimator and deriving an explicit formula evaluating
the precision of estimation for an arbitrary finite number of
measurement trials. We applied the idea using, as an ex-
ample, k-qubit state tomography with detection errors, and
showed plots for the one- and two-qubit cases. We also
show how the formula can be used for evaluating the
precision of state preparation. To the best of our knowl-
edge, this is the first result that makes it possible to evaluate
the precision of estimation and preparation without know-
ing the prepared state, and we hope it finds application in
the analysis of experimental data.
The authors thank the referee for drawing their attention

to Ref. [23]. T. S. thanks Steven T. Flammia, David Gross,

(a) (b)

FIG. 2 (color online). Confidence level of �ENM for the error threshold � ¼ 0:07 in quantum state tomography: (a) is the one-qubit
(k ¼ 1) case and (b) is for two qubits (k ¼ 2). The line styles are fixed as follows: solid (black) line for detection efficiency � ¼ 1,
dashed (red) line for � ¼ 0:9, dot-dashed (blue) line for � ¼ 0:8.
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