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We show that the Wigner-Bargmann program of grounding nonrelativistic quantum mechanics in the

unitary projective representations of the Galilei group can be extended to include all noninertial reference

frames. The key concept is the Galilean line group, the group of transformations that ties together all

accelerating reference frames, and its representations. These representations are constructed under the

natural constraint that they reduce to the well-known unitary, projective representations of the Galilei

group when the transformations are restricted to inertial reference frames. This constraint can be

accommodated only for a class of representations with a sufficiently rich cocycle structure. Unlike the

projective representations of the Galilei group, these cocycle representations of the Galilean line group do

not correspond to central extensions of the group. Rather, they correspond to a class of nonassociative

extensions, known as loop prolongations, that are determined by three-cocycles. As an application, we

show that the phase shifts due to the rotation of Earth that have been observed in neutron interferometry

experiments and the rotational effects that lead to simulated magnetic fields in optical lattices can be

rigorously derived from the representations of the loop prolongations of the Galilean line group.
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Introduction.—Following the very interesting experi-
ment of Werner, Staudenmann, and Colella [1] that mea-
sured an interference effect in the neutron wave function
due to the rotation of Earth, there have been several
attempts to derive the noninertial effects of rotating refer-
ence frames in quantum mechanics. The first among these
attempts was by Sakurai [2] who used the similarity
between the Lorentz force law F ¼ ev� B and the
Coriolis force F ¼ 2mv�! to calculate the phase shift
in the neutron interferometry experiment of [1]. Later,
Mashhoon [3] used what he called a ‘‘simple, yet tentative,
extension of the hypothesis of locality’’ to obtain the same
phase shift. Anandan critiqued this reasoning [4] and,
subsequently, Anandan and Suzuki [5] studied the problem
by drawing on the analogy between the Galilean trans-
formation properties of the Schrödinger equation and the
minimal coupling of a Uð1Þ-gauge connection. All of these
approaches are heuristic, essentially relying on inspired
appeal to analogy rather than being grounded on first
principles. The purpose of this Letter is to present a for-
mulation of quantum mechanics that holds in all noniner-
tial reference frames and show that the noninertial effects
of rotating reference frames leading to the observed phase
shift naturally follow from this formulation. Moreover, our
formulation predicts a new contribution to the phase shift
in reference frames with time dependent angular velocity,
which must be tested with new experiments.

On the experimental side, the analogy between the
Lorentz and Coriolis forces continues to be explored.
The key observation is that the effect of the Coriolis force
on a massive particle, be it charged or neutral, is identical
to the effect of an equivalent magnetic field on a charged

particle. In this regard, a suitable rotating frame can be
used to overcome limitations that arise from the charge
neutrality of atoms in cold atom experiments. In fact,
several remarkable experiments [6–10] have shown the
appearance of vortices in rotating atomic gases and Bose-
Einstein condensates, a property generally attributed to
superfluids and superconductors in magnetic fields.
Simulated magnetic fields generated by the Coriolis effect
have also been demonstrated by the behavior of rotating
atomic systems in the fractional Hall effect [11]. The
formalism presented here provides a theoretical framework
for understanding these varied experimental results.
Galilean line group.—Consider spacetime transforma-

tions

x 0 ¼ RðtÞxþ aðtÞ; t0 ¼ tþ b; (1)

where rotations R and space translations a are functions of
time. Together, they define the Euclidean line group Eð3Þ,
the infinite dimensional group of functions on the real line
taking values in the three-dimensional Euclidean group
[12]. When acting on a spacetime point (x, t), R and a
get evaluated at t, leading to (1). It follows from (1) that the
transformations (R, a, b) form a group

ðR2;a2; b2ÞðR1;a1; b1Þ ¼ ðð�b1R2ÞR1;�b1a2

þ ð�b1R2Þa1; b2 þ b1Þ; (2)

where �b is the shift operator ð�bfÞðtÞ ¼ fðtþ bÞ. It
accounts for the fact that in a successive application of
(1), the group elements R2 and a2 get evaluated at tþ b1,
whereas R1 and a1 get evaluated at t. We call the group
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defined by (2) the Galilean line group and denote it by G.
Properties of G have been studied in [13,14].

For R constant and aðtÞ of the form aðtÞ ¼ að0Þ þ vt, (1)
reduces to the usual Galilean transformations and the
group law (2) becomes the composition rule for the
Galilei group. Hence, the Galilean line group contains
the Galilei group as a subgroup. More generally, R and a
are arbitrary functions of time and, as such, they implement
transformations among all rotationally and linearly accel-

erating reference frames. For instance, aðtÞ ¼ að0Þ þ vtþ
ð1=2Það2Þt2 furnishes transformation to a uniformly
accelerating reference frame. Therefore, G is the group
of transformations that ties together all reference frames of
a Galilean spacetime. Extending the Wigner-Bargmann
program [15,16], which asserts that quantum theory is a
linear theory whose structure is largely determined by the
unitary representations of the relevant spacetime symmetry
group, our principal claim is that a Galilean quantum
theory that holds in noninertial reference frames should
be grounded in unitary representations of G. We will show
that the quantum mechanical effects of rotational reference
frames discussed in the introduction, in particular the
simulation of magnetic effects, can be obtained from these
representations.

Loop prolongations.—If a representation of the Galilean
line group is to describe a particle, it must contain as a
subrepresentation a unitary, irreducible, projective repre-
sentation of the Galilei group because it is these represen-
tations that describe particles in Galilean quantum
mechanics of inertial reference frames [16–18]. Recall
that a projective representation is one in which the homo-
morphism property holds only up to a phase

Ûðg2ÞÛðg1Þ ¼ ei�ðg2;g1ÞÛðg2g1Þ: (3)

The associativity requirement for ÛðgÞ leads to a con-
straint, called the two-cocycle condition, on �ðg2; g1Þ

ð��Þðg3; g2; g1Þ :¼ �ðg3; g2g1Þ þ �ðg2; g1Þ
� �ðg3g2; g1Þ � �ðg3; g2Þ ¼ 0: (4)

For this reason, the function �ðg2; g1Þ that defines the phase
in (3) is also called a two-cocycle.

The unitary irreducible projective representations of the
Galilei group can be constructed by the Wigner-Mackey
method of induced representations [16,17]. For the spin-
zero case, to which we limit ourselves in order to avoid
inessential complications, the representation can be
defined by the transformation formula

ÛðgÞjqi ¼ eimðq0�að0Þ�ð1=2Þv�að0Þþð1=2Þq02bÞjq0i; (5)

where q0 ¼ Rqþ v is the Galilean transformation formula
for velocity. (We label states by velocity rather than mo-
mentum.) Substituting (5) in (3), we deduce a two-cocycle
for the Galilei group

�ðg2;g1Þ¼m

2
ðað0Þ

2 �Rð0Þ
2 v1�v2 �Rð0Þ

2 að0Þ
1 þb1v2 �Rð0Þ

2 v1Þ:
(6)

In (5) and (6), as well as below, the superscript (0) indicates
the time independent nature of rotations and spatial trans-
lations of the Galilei group (zeroth order Taylor coeffi-
cients of R and a of G). In passing, we note that a
projective representation of a group is equivalent to a
true representation of its central extension [16,17].
Our task is to construct representations of the Galilean

line group under the constraint that they reduce to (5). This
constraint means that physically relevant representations of
G must be of the same general form as (3), with a suitable
two-cocycle �ðg2; g1Þ, g2, g1 2 G, that reduces to (6)
when restricted to ordinary Galilei transformations. Now,
since (6) involves velocities, a two-cocycle of G reducing
to (6) must contain the derivatives _a of spatial translations.
This leads to an additional complication, namely that
under time dependent rotations, a and _a do not transform
the same way owing to the inhomogeneous _R term in
ðd=dtÞðRaÞ ¼ R _aþ _Ra. This difficulty is a familiar one
from gauge field theories. In the present case, the trouble is
algebraic: any function �ðg2; g1Þ of the Galilean line group
that reduces to (6) fails to fulfill the two-cocycle condition
[the generalization of (4)]

ð��Þðg3; g2; g1Þ :¼ �b1�ðg3; g2Þ þ �ðg3g2; g1Þ
� �ðg2; g1Þ � �ðg3; g2g1Þ ¼ 0: (7)

Mathematically, since (7) is the condition that ensures
associativity, its failure means that there exist no group
extensions of the Galilean line group that contain a central
extension of the Galilei group. However, there exist non-
associative extensions of G that fit very nicely into the
theory of loop prolongations developed by Eilenberg and
MacLane [19]. A loop is a set with a binary operation that
fulfills the axioms of a group, except for associativity and
therewith, also the existence of a two-sided inverse (left
and right inverses may be distinct). Also, given three
elements a, b, c of a loop L, there always exists a unique
element Aða; b; cÞ 2 L, called an associator, such that

aðbcÞ ¼ Aða; b; cÞ½ðabÞc�: (8)

Associators measure deviations from associativity, much
like commutators measure the lack of commutativity. We
will not review the general theory of [19] here, but only
mention that the construction of loop prolongations runs
parallel to that of group extensions, with a little additional
care to handle the complications resulting from the failure
of (7).
Since the reduction to the ordinary Galilean case is the

key requirement, the construction of a loop prolongation of
G must start with a function �ðg2; g1Þ on G �G that
reduces to (6). The simplest choice is:
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�ðg2; g1Þ ¼ ðm=2Þðð�b1a2Þ � ð�b1R2Þ _a1

� ð�b1
_a2Þ � ð�b1R2Þa1Þ: (9)

Substituting (9) in (7),

ð��Þðg3;g2;g1Þ¼m

2
�b1!2 �ð�b1R2a1��b2þb1ðRT

3a3ÞÞ

�m

2
�b2þb1!3 �ð�b1a2��b1R2a1Þ�0;

(10)

where the angular velocity vector ! is related to the time
derivative of the rotation matrix by the usual formula
!� a ¼ _RRTa. As mentioned above, we see here that
the time dependence of rotations violates the cocycle con-
dition (7). In fact, if restricted to constant rotations, (9)
does become a two-cocycle and leads to group extensions
of the linear acceleration subgroup of the Galilean line
group, albeit these extensions are noncentral [13,20].

It can be shown that the collection of elements �G :¼
f �g � ð’; gÞg, where g 2 G and ’ is an arbitrary scalar
function of time, fulfill all axioms of a loop prolongation

[14,19]. The composition rule for �G is �g2 �g1 ¼ ð�b1’2 þ
’1 þ ð1=mÞ�ðg2; g1Þ; g2g1Þ [14]. When g 2 G are re-

stricted to Galilei transformations, �G reduces to a central
extension of the Galilei group, our crucial embedding
requirement.

A direct calculation using (8) shows that the associators

of �G are of the form

Að �g3; �g2; �g1Þ ¼ ð��ðg3; g2; g1Þ; eÞ; (11)

where ð��Þðg3; g2; g1Þ is defined by (10) and e ¼ ðI; 0; 0Þ is
the identity element of G. This means associators do not
act on the spacetime points and this situation is precisely as
in central extensions of the Galilei group. Further, (10) that

defines the associators of �G is a three-cocycle. We call the

loop prolongation �G defined by the three-cocycle (10) the
Galilean line loop. Though not common in the physics
literature, three-cocycles have been looked at in connec-
tion with magnetic monopoles [21,22]. However, the con-
tent of the present case appears to be quite different from
these previous cases.

Unitary representations of the Galilean line loop.—The
main thesis that we advocate in this Letter is that quantum
mechanics in noninertial reference frames should be
grounded in unitary, possibly cocycle, representations of

the Galilean line loop �G. In particular, a particle should be
described by a unitary, irreducible representation (irrep) of
�G and multiparticle systems by tensor products of such
irreducible representations.

The irreps of �G can be constructed by the method of

induced representations. Operators Ûð �gÞ furnishing the
representation can be defined by their action on the veloc-
ity eigenvectors jqi:

Ûð �gÞjqi ¼ ei�ð �g;qÞj��bq
0i; (12)

where

�ð �g;qÞ¼m

�
’þq0 �a�1

2
a� _aþ1

2
ð��b�1Þq0 �aq0

�
;

aq¼
Z
dtq; q¼ d

dt
aq;

q0 ¼Rqþ _Raqþ _a¼ d

dt
ðRaqþaÞ¼ d

dt
aq0 :

(13)

It follows from (13) that aq is our standard boost in that the

operator ÛðgqÞ; gq ¼ ð0; I;aq; 0Þ, transforms the rest vec-

tor j0i to jqi. In evaluating the integral
R
dtq to determine

aq, we choose the boundary condition that the constant of

integration be set to zero.
The representation (12) reduces precisely to the Galilean

group representation (5). By way of this property, the m in
(13) acquires interpretation as inertial mass. Further, com-
posing two elements,

Ûð �g2ÞÛð �g1Þ j qi ¼ ei�2ð �g2; �g1;qÞÛð �g2 �g1Þ j qi; (14)

where

�2ð �g2; �g1; qÞ :¼ �ð �g1; qÞ þ �ð �g2; ��b1q
0Þ � �ð �g2 �g1; qÞ

¼ mð�b1!2Þ � ðR1aq � a1

� ð�b1R2Þa1 ��b1a2Þþmð1��b1Þ’2

þmð��b1 � 1Þ�ðg2; g1gqÞ: (15)

It is clear from (15) that the representation structure of the

loop �G is more intricate than that of projective representa-
tions of groups. In the latter case, once the central exten-
sion has been taken, the equivalent representation is a true
representation. In contrast, a phase factor appears in (14),
showing that the representation of the loop prolongation is
itself a cocycle representation. A noteworthy consequence
of the phase structure of the representation is that the
Bargmann argument that mass is super selected applies
in this general case, too.
The repeated application of (14) and (15) gives

ð Ûð �g3ÞÛð �g2ÞÞÛð �g1Þ ¼ Ûð �g3ÞðÛð �g2ÞÛð �g1ÞÞ: (16)

This shows that even though the Galilean line loop �G is

nonassociative, the operators Ûð �gÞ furnishing its represen-
tation do associate, a necessary requirement for linear
operators in a vector space. This is a direct outcome of
the structure of the associators (11) and composition (14)
in that the difference between the phases on the two sides

of (16) exactly cancels the operator ÛðAð �g3; �g2; �g1ÞÞ rep-
resenting the corresponding associator. The details of this
calculation as well as the construction of the representation
(12) can be found in [14]. In sharp contrast, the operators
representing symmetry transformations do not associate,
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and thus, are not even defined in the three-cocycle analysis
of [21].

Even though �G is a loop, all of the physical trans-
formations that correspond to the usual observables form
one parameter subgroups. Hence, the observables for a
free particle in a noninertial reference frame can be
obtained from (12) in the usual way. In particular, from
the definition that the Hamiltonian is the generator of

time translations, Ĥ :¼ iðdÛð0; I; 0; bÞ=dbÞjb¼0, we
obtain from (12),

Ĥ ¼ P̂2

2m
þm _q �

�
X̂þ 1

2
aq

�
: (17)

Here, P̂ is the momentum operator, defined as the gen-

erator of constant spatial translations að0Þ, and X̂ is the

position operator canonically conjugated to P̂, X̂ :¼
ði=mÞrq. The first term of (17) is the usual kinetic energy

term. It results from the usual transformation Ĥ0 :¼
Ûð �gÞĤIÛð �gÞy of the inertial frame Hamiltonian ĤI under

the line group. The second term Ĥfic � m _q � ðX̂þ 1
2aqÞ

carries the fictitious force effects of the noninertial refer-
ence frame. Not surprisingly, it is proportional to the
inertial mass. Therefore, we may write the Schrödinger
equation in a noninertial reference frame as

i
@c 0

@t
¼ ðĤ0 þ ĤficÞc 0; (18)

where c 0 ¼ Ûð �gÞc is the transformed wave function.
Simulated magnetic fields from rotating reference

frames.—As a special case, consider the transformation
from an inertial reference frame to a rotating reference
frame. Then, from (12) and (13),

jqi ¼ Ûð0; R; 0; 0Þjqð0Þi; (19)

q ¼ Rqð0Þ þ!� aq; (20)

where the superscript (0) indicates the time independence
of velocity in an inertial frame. Differentiating (20), we
obtain

_q � €aq ¼ _!� aq þ 2!� q�!� ð!� aqÞ; (21)

where the Euler, Coriolis, and centrifugal terms have
emerged naturally. The substitution of (21) in (17) gives

Ĥ ¼ Â0 þ 1

2m
ðP̂ � ÂÞ2; (22)

where

Â0¼�2m

�
!�

�
X̂þ1

2
aq

��
�ð!�X̂Þ�maq �ð _!�X̂Þ;

Â¼2m!�
�
X̂þ1

2
aq

�
: (23)

Hence, we have shown that the gauge connection that
appears in a rotational reference frame can be rigorously

derived from the representations of the Galilean line loop.

The ð1=2Þaq in X̂þ ð1=2Þaq is not significant as it results

from the choice of the two-cocycle (6) and may be

removed by a suitable phase. Even then, Â and the first

term of Â0 differ by factors of 2 and 4 from what has been
obtained previously by the analogy between the Coriolis
and Lorentz forces [2,5]. [See (25) below.] Further, besides
being rigorous, our result holds for nonconstant ! as well

and in that case there is another term, maq � ð _!� X̂Þ,
which would be missed if only rotations were considered,
rather than the full Galilean line group. This suggests a
more intricate gauge structure that should be tested by new
experiments with time dependent !.
As a possible setup for such experiments, consider a

frame of reference that oscillates about the z axis so that the
azimuthal angle is a sinusoidal function of time, �ðtÞ ¼
�0 sin!t, where �0 and ! are constants. The correspond-
ing rotation, angular velocity and acceleration matrices are

RðtÞ ¼
cos�ðtÞ � sin�ðtÞ 0

sin�ðtÞ cos�ðtÞ 0

0 0 1

0
BB@

1
CCA;

�ðtÞ ¼ _RRT ¼ !�0 cos!t

0 �1 0

1 0 0

0 0 0

0
BB@

1
CCA;

and

_�ðtÞ ¼ �!2�0 sin!t

0 �1 0

1 0 0

0 0 0

0
BB@

1
CCA:

The Hamiltonian may then be explicitly obtained by sub-
stituting these expressions into (22) and (23). In particular,
the Euler term

maq � ð _!�X̂Þ¼m!2t�ðtÞ½ðcos�ðtÞX̂2þsin�ðtÞX̂1Þqð0Þ1

þ ðcos�ðtÞX̂1�sin�ðtÞX̂2Þqð0Þ2 �: (24)

Since thermal neutrons are usually used in interferometry
[3], the contribution of (24) to the phase shift may be
determined by integrating the gauge potential from the
source to the detector along two suitable paths leading to
interference. Or, we may consider a simple system such as
a particle in a box in an oscillating reference frame and its
energy level shifts due to (24). To that end, we may use the

relation c 0 ¼ ÛðRðtÞÞc to solve (18).
As a final remark, we note that our Hamiltonian, both in

its general form (17) and specific form (22) for rotations, is
different from the corresponding classical Hamiltonian.
For rotations, the classical Hamiltonian is Hclas ¼
ð1=2mÞðp0 �AÞ2 þ A0, where p

0 is the canonical momen-
tum corresponding to x0 ¼ RðtÞx and
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A ¼ m!� x0; A0 ¼ �m

2
ð!� x0Þ2: (25)

Notably, the Euler term is absent in the classical Hamiltonian
and the remaining terms of the gauge connection differ from
those of (23) by factors of 2 and 4. However, the classical
Hamiltonian leads to an equation of motion that is identical
to (21). These differences are clearly rooted in the structure
of canonical transformations in that, in contrast to (17),
accelerations appear only in the equations of motion and
never in the transformedHamiltonian.This observation leads
to the inference that the usual way of ‘‘quantizing’’ a theory
by promoting the classical Hamiltonian to an operator is at
odds with the Wigner-Bargmann approach when covariance
under arbitrary coordinate transformations is required. In this
regard, besides its applications to simulated magnetic fields
in rotating reference frames, the study presented here also
helps settle two broad theoretical issues: the correct way to
ground quantummechanics in arbitrary reference frames and
the physical relevance of three-cocycles.
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