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A spin-wave approach of the zero temperature superfluid-insulator transition for two-dimensional hard-

core bosons in a random potential � ¼ �W is developed. While at the classical level there is no

intervening phase between the Bose-condensed superfluid (SF) and the gapped disordered insulator, the

introduction of quantum fluctuations leads to a much richer physics. Upon increasing the disorder strength

W, the Bose-condensed fraction disappears first, before the SF. Then a gapless Bose-glass phase emerges

over a finite region until the insulator appears. Furthermore, in the strongly disordered SF regime, a

mobility edge in the spin-wave excitation spectrum is found at a finite frequency �c decreasing with W,

and presumably vanishing in the Bose-glass phase.
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A correct understanding of the interplay between strong
correlations and disorder is one of the most difficult
questions in condensed matter physics [1,2]. While the
Anderson theory of localization [3] for single particle
states is now a well-established paradigm to describe elec-
tronic transport in disordered environments, the equivalent
bosonic problem of dirty superconductors or superfluids
remains quite challenging [4,5]. Despite numerous
pioneering studies [4,6], several questions remain open.
For instance, in 1D the universal character of the Luttinger
exponent at the superfluid-Bose-glass (SF-BG) transition
has been recently questioned [7–9]. For more realistic
higher-dimensional systems relevant for disordered super-
conductors [10,11], quantum antiferromagnets [12], or
cold atoms [13], quantum Monte Carlo (QMC) approaches
have considerably improved our understanding of the dirty
boson problem over the past 20 years [14–21], but they
have also raised new issues regarding the universal value of
some critical exponents [20–23], and so far they have only
addressed ground-state properties. On the analytical side,
important progress has been made recently to go beyond
mean-field (MF) theory [24–27]. Although a naive MF is
unable to find a localization transition, even at very strong
disorder [6], a quantum cavity approach on the Bethe [24] or
the square lattice [25,27,28] is able to capture such a tran-
sition. Nevertheless, several issues remain unsolved, in par-
ticular concerning finite frequency physics [24,29,30] and
the outstanding question ofmany-body localization [31–33].

In this Letter, we want to improve our understanding of
the interplay between quantum fluctuations and disorder by
addressing the spin-wave (SW) corrections for the Ma-Lee
model in a disordered potential on the square lattice

H b ¼ �t
X
hiji

ðbyi bj þ bib
y
j Þ �W

X
i

�ini; (1)

which describes preformed Cooper pairs (hard-core bosons)
hopping between nearest-neighbor sites with a random
chemical potential W�i, where �i ¼ �1 with probability

1=2. In the disorder-free case (i.e., �i ¼ 1, for instance), this
well-known model [34,35] displays two phases at T ¼ 0:
(i) a Bose-condensed superfluid regime for incommensurate
filling 0< hni< 1 if jWj< 4t, and (ii) a trivial insu-
lator filled (empty) with hni ¼ 1 (hni ¼ 0) for W > 4t
(W <�4t). Using the Matsubara-Matsuda mapping [36]
of hard-core bosons onto pseudospin 1=2, Hamiltonian (1)
is exactly equivalent to a spin- 12 XY model in a longitudinal

field along the z axis. A mean-field description, where spin
operators are treated as classical vectors with two angles
�i and �i, gives an energy E ¼ �ðt=2ÞPhiji sin�i sin�j
cosð�i ��jÞ � ðW=2ÞPi�i cos�i minimized by �i ¼
const and cos�i ¼ �iW=ð4tÞ if W � 4t, meaning XY order
for the spins (and superfluid Bose condensate for the
bosons). IfW > 4t, there is no XY order anymore: all spins
point along the z axis with cos�i ¼ �i, which, in the bosonic
language, corresponds to a disordered insulator with local
occupations hnii ¼ ð1þ �iÞ=2 (¼ 0 or 1). In the XY regime,
condensate and superfluid densities (�0 and �sf) are
both equal to ðsin2�iÞ=4 ¼ ½1� ðW=4tÞ2�=4 vanishing at
W ¼ 4t. Within such a classical description, a direct tran-
sition between SF and gapped phases is observed for
W > 4t, as is visible in Fig. 1, with no intermediate local-
ized regime, an artifact of MF theory.
However, when quantum fluctuations are introduced, the

situation changes dramatically [37]. Before describing in
more details our SW results, let us first briefly summarize
our main conclusions. Here, we have studied square sys-
tems up to 64� 64 for several hundreds of disordered
samples, which allowed us to get infinite size extrapola-
tions for various thermodynamic quantities such as the
superfluid and the condensate densities �sf and �0. An
intervening gapless Bose-glass phase is unambiguously
found between the superfluid and the gapped insulator.
Properties of the SW excitation spectrum have also been
studied, namely, the sound velocity and the inverse partici-
pation ratio (IPR) of the SW excited states [38–40]. The
localization of SW modes displays very interesting
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features vs frequency�. We find a finite mobility edge�c,
such that states with frequencies�<�c are extended and
states at �>�c are localized. Upon increasing the dis-
order strength,�c decreases and vanishes in the BG phase.

Let us now present in more details these results. SW
corrections for hard-core bosons are treated in a straight-
forward way [34,35], first making a local rotation for
the pseudospin operators, and then introducing Holstein-
Primakoff bosons (a, ay). At the linear SW level, the

hard-core bosons model (1) reads H b ¼ E þH ð2Þ, with

H ð2Þ ¼ �1

2

X
hiji

½ðtijaiayj þ �tija
y
i a

y
j Þ þH:c:� þ �

X
i

ni; (2)

where tij ¼ t½1þ �i�jð ��=4tÞ2�, �tij ¼ t½�i�jð ��=4tÞ2 � 1�,
with � ¼ maxðW; 4tÞ and �� ¼ minðW; 4tÞ. Because trans-
lational invariance is broken by the disorder, the quadratic
bosonic Hamiltonian Eq. (2) is diagonalized by a
Bogoliubov transformation in real space, which yields

H ð2Þ ¼ XN
p¼1

�
�p

�
�y
p�p þ 1

2

�
� �

4

�
: (3)

�p are the SW frequencies and (�, �y) describe

Bogoliubov quasiparticles. In the clean case W ¼ 0, the
modes p are labeled by the wave vectors k ¼ ðkx; kyÞ and
the SW spectrum�k ¼ 2t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 2ðcoskx þ coskyÞ

q
� 2tjkj

when jkj ! 0, recovering the linear Bogoliubov spectrum
with a ‘‘velocity of sound’’ v0 ¼ 2t.

It is important to note that the Bose-condensate and
superfluid fractions are intrinsically different objects which
are only equal in the simplest MF description: 4He being

one of the best examples of a strongly correlated (non-MF)
bosonic system with �0=�sf ’ 8% at low temperature [41].
To go beyond MF, we want to compute the first SW
corrections for the condensate and the superfluid response.
As discussed in detail in Ref. [35], there are two ways for
correctly computing 1=S corrections to a physical observ-
able O. One may evaluate its expectation value hOi in the
1=S-corrected ground state, but this is not an easy task for
our disordered problem. Perhaps more simply one can add
a small symmetry-breaking term to the Hamiltonian of the
form 	H ¼ ��O, compute the 1=S-corrected energy,
and take the derivative with respect to the field in the

limit � ! 0. For instance, the condensate density �0 ¼
ð1=N2ÞPijhbyi bji, which is simply related in the pseudo-

spin language to the transverse magnetization (�0 ¼ m2
xy

whenN ! 1) is obtained by adding a term��
P

iS
x
i to the

pseudospin XY model. The SF density �sf can be equally
computed using the response of the system to twisted
boundary conditions [42], via the helicity modulus (or
superfluid stiffness) �sf ¼ @2Eð’Þ=@’2j’¼0, then simply

related to the SF density by �sf ¼ �sf=2t.

Numerical results for hSxi on lattices up to 32� 32
(averaged over several hundreds of disordered samples)
are shown in Fig. 2(b) vs 1=N. There, we clearly see that
when the disorder exceeds W=t ¼ 3:5, SW correction
starts to become larger than the classical contribution,
thus giving a negative magnetization which we interpret
as a transition to a zero magnetization state. Finite size
extrapolations to the thermodynamic limit [full lines in
Fig. 2(b)] give the disorder average condensate density

�0 ¼ ðhSxiÞ2 [43] plotted in Fig. 1. Such a behavior is
not surprising, as it is well known that quantum fluctua-
tions on top of the classical solution deplete the condensate
mode. Here quantum fluctuations cooperate with disorder,
leading to monotonic destruction of Bose condensation,
gradually increasing from�25% depletion atW ¼ 0 up to
100% at W0=t ¼ 3:55ð5Þ.
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FIG. 1 (color online). SF and Bose-Einstein condensate
densities �sf and �0 plotted together with the gap �, against
the disorder strength W=t. The classical densities (filled circle)
both vanish at the same point W ¼ 4t, whereas SW corrected

quantities �ðswÞ
sf (square) and �ðswÞ

0 (diamond) vanish at different

pointsW0 <Wsf < 4t, leaving a finite window for an intervening
gapless Bose glass before the gapped insulator. Insets depict SF
and insulating phases in the pseudospin representation. Disorder
average was performed over several hundreds of disordered
samples. The green line is a guide to the eyes.
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FIG. 2 (color online). (a) Crossing of the disorder average
superfluid density �sf � Lz in the vicinity of the critical disorder
where superfluidity disappears. Using z ¼ 2, a very convincing
crossing is found for Wsf ¼ 3:738ð1Þ. (b) Transverse magneti-

zation hSxi computed using a numerical derivative with respect
to a small transverse field � ¼ t=100 and averaged over several
hundreds of samples, plotted against 1=N for various disorder
strengths in the vicinity of W0 ¼ 3:55ð5Þ.
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More surprising is the behavior of the SF density �sf

computed in the presence of a small twist angle ’ ¼ 10�2.
Infinite size extrapolations for �sf are shown in Fig. 1 (blue
squares), where we see that contrary to the condensate,
quantum fluctuations first enhance superfluidity for weak
disorder, until W=t ¼ 3, where quantum and disorder
effects start to cooperate and destroy the superfluid which
finally disappears for a critical disorder 4>Wsf=t ¼
3:738ð1Þ>W0=t. One can also test hyperscaling at the
2D critical point where [16] �sf � L�z is expected. As
shown in Fig. 2(a), we check that the best crossing of
�sf � Lz is obtained at Wsf=t ¼ 3:738ð1Þ with a critical
exponent z ¼ 2:0ð1Þ, in surprisingly good agreement with
the expected z ¼ d [4,20]. A very careful QMC study is
necessary [44] in order to investigate whether such a scal-
ing will survive to higher-order corrections. Interestingly,
condensate and superfluidity disappear for different values
of the disorder, realizing a condensate-free superfluid [45].
While such a state of matter could in principle be stabilized
in such a system, it is legitimate to wonder whether the
window Wsf �W0 remains finite beyond linear SW cor-
rections, a question perfectly suited to future QMC simu-
lations [44]. In any case, we have demonstrated here that
linear SW corrections can drive a bosonic state where both
�0 and �sf are zero over a finite window W 2 ½Wsf ; 4t�,
which is interpreted as an insulating Bose glass with a
gapless excitation spectrum, as we discuss now.

We first focus on the first excitation level above the
Bogoliubov vacuum.We find the entire regime 0 � W=t �
4 to be gapless, with a zero mode �0 ’ 0, and a finite size
gap to the first excited state scaling in the limit L 	 1, as
�swðLÞ � 2
v=L, as visible in Fig. 3(a) for various values
of the disorder W. The prefactor v is identified with the
velocity of sound (or SW velocity) and is shown in Fig. 3(b)
rescaled by its zero-disorder value v0 ¼ 2t vs W=t. In the
same panel Fig. 3(b), the classical hydrodynamic relation

for the velocity v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
�sf=�

p
is also plotted, with �sf and �

being the MF results for the helicity modulus and the
compressibility. Both estimates for v compare remarkably
well. Interestingly, the bottom of the SW spectrum is only
weakly affected by the disorder and remains phononlike
(delocalized) over the entire gapless regime W=t 2 ½0; 4�
with a finite velocity, almost disorder independent, except
very close to the insulating phase at W=t ¼ 4 where v
abruptly drops down [46]. This finite velocity in the entire
gapless regime is consistent with recent studies of Anderson
localization of phonons in disordered solids [47,48]. Above
W ¼ 4t, the zero mode disappears and a finite gap opens
in the SW spectrum, as is visible in Figs. 1 and 3(c).
Interestingly, this gap does not scale linearly with W � 4t
as in the clean case, but opens up more rapidly, presumably

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W � 4t

p
and approaches the clean case only at large W.

Following Ref. [39], we have investigated the localiza-
tion properties of the entire SW Bogoliubov excitation
spectrum. Here we shall just mention the main results of

this study, which will be described in details in a longer
article [40]. In Ref. [39], it has been observed that the
localization properties of the SW excited states depend
crucially on the frequency in a way similar to the
Anderson localization of phonons [47]. Here, we have
analyzed this effect by considering the IPR defined for
each (normalized) state jpi ¼ P

ia
p
i jii, where i are lattice

sites, by IPRp ¼ P
N
i¼1 japi j4. For delocalized modes IPR�

1=N, whereas localized states display a finite IPR� 1=�2,
where � is the localization length. Since SW spectra are
discrete for finite size systems, in particular, at low energy,
we define disorder average IPRs over finite slices of
frequencies centered around �:

IPRð�Þ ¼
P

p �ð�p;�� 	�ÞIPRpP
p �ð�p;�� 	�Þ ; (4)

where �ð�p;�� 	�Þ ¼ 1 if �� 	� � �p �
�þ 	�, and 0, otherwise, with 	�=v0 ¼ 1=20 in the
following. While for weak disorder W=t < 2, all the ex-
cited states are found delocalized, similar to the clean
case where the coefficients are simply the Fourier modes

api ¼ expðikp 
 riÞ=
ffiffiffiffi
N

p
; thus, giving for all frequencies

IPRð�Þ � N ¼ Oð1Þ, the case of strongly disordered SF
appears much more interesting, as is visible in Fig. 4,

(a)

(b) (c)

FIG. 3 (color online). (a) Finite size SW gap plotted vs 1=L for
various disorder strengths W < 4t in the gapless regime. Full
lines are quadratic fits of the form �ðLÞ ¼ 2
v=Lþ b=L2,
where v, the sound velocity, is displayed in panel (b) against
W=t, together with the estimate from the classical hydrodynamic
relation (see text). The full blue line is a power-law fit
�ð4t�WÞ0:085. (c) Infinite size extrapolation of the SW gap
(red circles) in the insulating regime W > 4t. The full red line is
a power-law fit �ðW � 4tÞ0:496, and the black dotted line is the
clean case (� ¼ W > 4t) result: � ¼ W � 4t.
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which shows representative results for W=t ¼ 3:4. At low
energy, the modes are delocalized, but the situation
changes dramatically above a certain threshold frequency
�c—the mobility edge—where IPRð�Þ � N starts to
increase linearly with N, a characteristic signature of
localization. At the mobility edge, as in the case of the
Anderson transition [1,47], the IPR is found to display an

anomalous scaling IPRð�cÞ / N�D2=2 with a fractal di-
mension D2 ’ 1:48< 2. This is well visible in Fig. 4(a)

where the best crossing of IPRð�Þ � ND2=2 has been
obtained for D2 ¼ 1:48. For other disorder strengths (as
well as for other types of disorders [40]), the same fractal
exponent has been found to obtain the best crossing curves
separating extended modes at�<�c from localized ones
at �>�c (see Ref. [49]).

The evolution of the mobility edge�c against increasing
disorder is shown in Fig. 4(c), where we see that �c ! 0
when the BG phase is approached. While the localization
transition point is easily identified in Fig. 4 for W=t ¼ 3:4,
closer to the SF-BG boundary, the error bars for �c

get bigger. Indeed, it becomes more difficult to correctly
estimate the localization transition on finite size systems
for W=t > 3:7, where the crossing point displays a sizable
drift towards smaller frequencies when N increases.
Nevertheless, our data are consistent with a zero frequency
mobility edge in the BG state (see Ref. [49]) supporting the
fact that the BG phase is localized for all�> 0. The phase
diagram energy disorder in Fig. 4(c) displays three different
regimes: (i) delocalized excitations in the SF regime below a
finite mobility edge�c, (ii) absence of modes below a finite
gap � forW=t > 4, and (iii) localized excitations above�c

or�. Finally, one canmention that contrary to Refs. [24,50],
inside the insulating phase, we do not find any mobility edge
from localized excited states at small frequency to extended
states at large frequencies. Conversely, our results support
the idea that superfluidity emerges out of the localized BG

phase by a delocalization at �> 0, in agreement with
Refs. [29,39].
To conclude, we have shown that linear spin-wave cor-

rections are able to capture the localization of 2D hard-core
bosons in a random potential. At 1=S order, an interesting
condensate-free superfluid state was found before entering
in the disordered gapless Bose glass. The spin-wave exci-
tation spectrum displayed very interesting features, with a
mobility edge at finite frequency above the superfluid
phase, vanishing in the Bose glass.
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