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Flavien Hirsch,1 Marco Túlio Quintino,1 Joseph Bowles,1 and Nicolas Brunner1,2
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The nonlocality of certain quantum states can be revealed by using local filters before performing a

standard Bell test. This phenomenon, known as hidden nonlocality, has been so far demonstrated only for

a restricted class of measurements, namely, projective measurements. Here, we prove the existence of

genuine hidden nonlocality. Specifically, we present a class of two-qubit entangled states, for which we

construct a local model for the most general local measurements, and show that the states violate a Bell

inequality after local filtering. Hence, there exist entangled states, the nonlocality of which can be revealed

only by using a sequence of measurements. Finally, we show that genuine hidden nonlocality can be

maximal. There exist entangled states for which a sequence of measurements can lead to maximal

violation of a Bell inequality, while the statistics of nonsequential measurements is always local.
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Performing local measurements on separated entangled
particles can lead to nonlocal correlations, as witnessed
by the violation of a Bell inequality [1]. This phenomenon,
termed quantum nonlocality, has received strong
experimental confirmation. Moreover, entanglement and
nonlocality are now viewed as fundamental aspects of
quantum theory and play a prominent role in quantum
information [2,3].

However, 50 years after the discovery of Bell’s theorem,
we still do not fully understand the relation between entan-
glement and nonlocality, although significant progress was
made [3]. In particular, the most natural question, of which
entangled states can lead to nonlocal correlations and
which ones cannot, is still open. While it is known that
nonlocality is a generic feature for pure entangled states
[4,5], the situation for mixed states turns out to be much
more complex. First, Werner [6] showed that there exist
mixed entangled states (so-called Werner states) that admit
a local model for projective measurements. However, it
could still be the case that such states violate a Bell
inequality when more general measurements, i.e. positive
operator value measures (POVMs), are considered.
Motivated by this question, Barrett [7] showed that certain
noisy Werner states (but nevertheless entangled) admit a
local model even when POVMs are considered (see also
Ref. [8]).

Another twist to this question was given in Refs. [9,10],
proposing Bell tests where observers perform a sequence
of measurements—rather than a single measurement.
Notably, Popescu [9] showed that Werner states of local
dimension d � 5 can violate a Bell inequality when judi-
cious local filters are applied to the state before performing
a standard Bell test. Hence, the local filters reveal the
hidden nonlocality of the quantum state. Importantly,
the use of local filters does not open any loophole, since
the choice of local measurement settings (for the second

measurement) can be performed after applying the filters
[9,11,12]. While this result shows that sequential measure-
ments can be beneficial in Bell tests, it raises the question
of whether they are necessary. Indeed, the crucial point
here is that hidden nonlocality has been so far demon-
strated only for a restricted class of measurements, namely,
projective measurements. Specifically, the Werner states
considered by Popescu admit a local model for projective
measurements but could in principle violate a Bell inequal-
ity when POVMs are considered. Indeed, POVMs are
proven to be relevant in Bell tests, as they can increase
Bell violation compared to projective measurements [13].
Hence, this raises the question of whether there exists
genuine hidden nonlocality. That is, do there exist
entangled states, the nonlocality of which can be observed
only if sequential measurements are used?
Here, we prove the existence of genuine hidden non-

locality. Specifically, we start by presenting a simple class
of two-qubit entangled states, for which we construct a
local model for POVMs, i.e., arbitrary nonsequential mea-
surements. Next, we show that these states violate the
Clauser-Horne-Shimony-Holt (CHSH) [14] Bell inequality
when a judiciously chosen sequence of measurements is
performed. Hence, this shows that sequential measure-
ments outperform nonsequential ones, and that the non-
locality of certain entangled states can be revealed only
through a sequence of measurements. Moreover, our con-
struction provides the simplest example of hidden non-
locality known so far. A central tool for deriving our
result is a technique which allows us, starting from a local
model for simulating dichotomic projective measurements
on a given state, to construct a local model for simulating
POVMs on a related (but in general different) state. Finally,
we demonstrate that genuine hidden nonlocality can be
maximal. Specifically, we present a simple class of qutrit-
qutrit entangled states which admit a local model for
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POVMs but violate maximally the CHSH inequality when
a sequence of measurements is used. Hence, such states are
useful resources for information-theoretic tasks based on
nonlocality [2,3], although they seem useless at first sight.
These results highlight novel aspects of the subtle relation
between entanglement and nonlocality.

We start by introducing the scenario and notations.
Consider a bipartite Bell scenario in which distant parties,
Alice and Bob, perform local measurements on an
entangled state � of local Hilbert space dimension d. The
choice of measurement setting is denoted by x for Alice
(y for Bob), and the measurement outcome by a (b for
Bob). Each setting is represented by a collection of positive
operators acting on Cd, denoted here as Majx and Mbjy,
satisfying the relations

P
aMajx ¼ 1 and

P
bMbjy ¼ 1,

where 1 denotes the identity operator in dimension d.
The experiment is then characterized by the joint proba-
bility distribution

pðabjxyÞ ¼ TrðMajx �Mbjy�Þ: (1)

If the distribution pðabjxyÞ violates (at least) one Bell
inequality, the state � is said to be nonlocal. If, on the
other hand, the distribution admits a decomposition

pðabjxyÞ ¼
Z

d�!ð�Þpðajx�Þpðbjy�Þ (2)

for all possible measurements, the state � admits a local
model and cannot violate any Bell inequality. Here, �
represents the local hidden variable, distributed according
to the density !ð�Þ. We will consider two separate cases.
First, when a decomposition of the form (2) can be found
for all projective measurements (i.e., M2

ajx ¼ Majx and

M2
bjy ¼ Mbjy), we say that � is local for projective mea-

surements. Second, if a decomposition of the form (2) can
be found for all POVMs (arbitrary nonsequential measure-
ments), we say that � is local for POVMs.

So far, we have considered a Bell scenario in which each
party performs a single measurement on its particle. One
can, however, consider a more general measurement sce-
nario, in which each party performs a sequence of mea-
surements [9,10]. For instance, upon receiving their
particle, the parties apply a local filtering. In the case that
the filtering succeeds on both sides, the parties now hold
the ‘‘filtered’’ state

~� ¼ 1

N
½ðFA � FBÞ�ðFy

A � Fy
BÞ�; (3)

where N ¼ Tr½ðFA � FBÞ�ðFy
A � Fy

BÞ� is a normalization

factor, and FA and FB are positive operators acting on Cd

representing the local filtering of Alice and Bob. Finally,
the parties perform local measurements on ~� and can test a
Bell inequality. Here, we will see that such a sequence of
measurements is necessary in certain cases. More pre-
cisely, there exist entangled quantum states, the nonlocality
of which can only be revealed by performing sequential

measurements. Thus, such states exhibit genuine hidden
nonlocality.
To demonstrate our main result, we proceed in several

steps. First, we consider a simple class of entangled two-
qubit states, of the form

� ¼ q�� þ ð1� qÞj0ih0j � 1
2
; (4)

where �� ¼ jc�ihc�j denotes the projector on the sin-

glet state jc�i ¼ ðj0; 1i � j1; 0iÞ= ffiffiffi
2

p
, and 0 � q � 1.

Building upon the models discussed in Refs [15,16], we
will see now that state (4) admits a local model for projec-
tive measurements when q � 1=2, although it is entangled
for all q > 0. Specifically, Alice and Bob receive as input a
vector ~x and ~y and should simulate the statistics of mea-
suring qubit observables ~x � ~� and ~y � ~� on �; here, ~�
denotes the vector of Pauli matrices; hence, the measure-
ment outcomes are �1.
Protocol 1.—Alice and Bob share a three-dimensional

unit vector ~�, uniformly distributed on the sphere. Upon

receiving ~x, Alice tests the shared vector ~�. With proba-

bility j ~x � ~�j, she ‘‘accepts’’ ~� and outputs a¼�sgnð ~x� ~�Þ;
otherwise, she outputs a ¼ �1 with probability ð1�
h0j ~x � ~�j0iÞ=2. Bob simply outputs b ¼ sgnð ~y � ~�Þ.
The protocol consists of two parts. First, when Alice

accepts ~�, which occurs on average with probability 1=2

(independently of ~x), ~� is distributed according to the

density !ð ~�Þ ¼ j ~x � ~�j=2� [15,16]. In this case, the corre-
lation between Alice’s and Bob’s outcomes is

habi ¼ � 1

2�

Z
d ~�j ~x � ~�jsgnð ~x � ~�Þsgnð ~y � ~�Þ ¼ � ~x � ~y;

(5)

where the integral is taken over the sphere. As the margin-
als are uniform, i.e., hai ¼ hbi ¼ 0, we recover the singlet

correlations. Second, when Alice rejects ~�, she simulates
locally the statistics of the state j0i, while Bob’s outcome is
uncorrelated. Hence, the model reproduces exactly the
statistics of the state (4) for q ¼ 1=2, i.e., habi ¼
ð� ~x � ~yÞ=2, hai ¼ xz=2, and hbi ¼ 0. The case q < 1=2 is
a trivial extension.
At this point, it is relevant to note that after local filter-

ing, the state (4) violates the CHSH inequality jSj � 2
[14], where S ¼ E1;1 þ E1;2 þ E2;1 � E2;2 and Ex;y ¼P

a;b¼�1ðabÞpðabjxyÞ. Specifically, applying filters of the

form

FA ¼ �j0ih0j þ j1ih1j; FB ¼ �j0ih0j þ j1ih1j; (6)

with � ¼ �=
ffiffiffi
q

p
to state (4), we obtain the filtered state

~� ’ ffiffiffi
q

p
�� þ ð1� ffiffiffi

q
p Þ j0; 1ih0; 1j þ j1; 0ih1; 0j

2
þOð�2Þ;

which violates CHSH up to S ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ q

p
(for � ! 0)

according the Horodecki criterion [17]. Note that filters
(6) are optimal here [18]. Hence, the state (4) exhibits
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hidden nonlocality for projective measurements. This
shows that hidden nonlocality exists for two-qubit
states—the previous example [9] considered Werner states
of local dimension d � 5. However, at this point, we
cannot ensure that the state (4) is local for all nonsequential
measurements, since Bell violation could in principle be
obtained using POVMs. Nevertheless, we will now build
upon the above construction to present a state featuring
genuine hidden nonlocality.

Our main tool is a protocol for constructing a state which
admits a local model for POVMs. Specifically, starting
from a state �0 of local dimension d which is local for
dichotomic projective measurements, we construct the
state

�0 ¼ 1

d2
½�0 þ ðd� 1Þð�A � �B þ �A � �BÞ

þ ðd� 1Þ2�A � �B�; (7)

which is local for POVMs. Here, �A;B are arbitrary

d-dimensional states, and �A;B ¼ TrB;Að�0Þ.
Alice receives as input a POVM fMag (from now on, we

omit the subscript x). Without loss of generality, each
POVM element Ma can be taken to be proportional to a
rank-one projector Pa (see, e.g., Ref. [7]), i.e.,Ma ¼ �aPa

with �a � 0 and
P

a�a ¼ d by normalization of the
POVM. Bob receives POVM fMbg (with Mb ¼ �bPb).
The protocol is explained below for Alice; Bob follows
the same procedure.

Protocol 2.—(i) Alice chooses projector Pa with proba-
bility �a=d (note that

P
a�a=d ¼ 1). (ii) She simulates the

dichotomic projective measurement fPa;1� Pag on state
�0. (iii) If the output of the simulation corresponds to Pa,
she outputs a. (iv) Otherwise, she outputs (any) a with
probability TrðMa�AÞ.

Let us now show that the protocol simulates �0. Note
first that the probability that Alice outputs in step (iii) is
given by

P
a�a=dTrðPa�AÞ ¼ 1=d. We will now evaluate

the probability that the parties output given values a and b
in the protocol. Four cases are possible: 1. Both Alice and
Bob output in step (iii), which occurs with probability
ð�a=dÞð�b=dÞTrðPa � Pb�0Þ ¼ ð1=d2ÞTrðMa �Mb�0Þ. 2.
Alice outputs in step (iii) and Bob in step (iv), which occurs
with probability

X
k

�a

d

�k

d
Tr½Pað1� PkÞ�0�TrðMb�BÞ

¼ d� 1

d2
TrðMa�AÞTrðMb�BÞ: (8)

3. Alice outputs in step (iv), and Bob in step (iii) has
probability ðd� 1=d2ÞTrðMa�AÞTrðMb�BÞ. 4. Both Alice
and Bob output in step (iv), which occurs with probability
½ðd� 1Þ2=d2�TrðMa�AÞTrðMb�BÞ. Altogether, we have
that pðabÞ ¼ TrðMa �Mb�

0Þ. Hence, the model reprodu-
ces the statistics of arbitrary POVMs on the state �0.

We are now ready to show our main result. We use
protocol 2 with �0 given by the state of Eq. (4), which is

local for projective measurements for q � 1=2, and choos-
ing �A;B ¼ j0ih0j, we obtain a state of the form

�G ¼ 1

4

�
q�� þ ð2� qÞj0ih0j � 1

2
þ q

1
2
� j0ih0j

þ ð2� qÞj0; 0ih0; 0j
�

(9)

which is local for POVMs by construction for q � 1=2.
Nevertheless, �G is nonlocal for any q > 0 when an appro-
priate sequence of measurements is used. In particular,
applying filters of the form (6) with � ¼ �=

ffiffiffi
q

p
to state

�G, we obtain

~�G’
ffiffiffi
q

p
2
��þ

�
1�

ffiffiffi
q

p
2

�j0;1ih0;1jþj1;0ih1;0j
2

þOð�2Þ;

which violates CHSH up to S ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q=4

p
(for � ! 0),

according the criteria of Ref. [17]. Hence, sequential
measurements are necessary to reveal the nonlocality of
the state (9), which therefore exhibits genuine hidden
nonlocality.
Finally, we present a stronger version of this phenome-

non, showing that there exist quantum states with genuine
and maximal hidden nonlocality. That is, although the state
admits a local model for POVMs, it violates maximally the
CHSH inequality when sequential measurements are used,
as the state after filtering is a pure singlet state.
We start here by considering the qutrit-qubit state

�E ¼ q�� þ ð1� qÞj2ih2j � 12

2
; (10)

where 12 denotes the identity in the j0i, j1i qubit subspace.
This state is usually referred to as the ‘‘erasure state,’’ as it
can be obtained by sending half of a singlet state ��
through an erasure channel; with probability q, the singlet
state remains intact, and with probability (1� q), Alice’s
qubit is lost and replaced by the state j2ih2j (orthogonal to
the qubit subspace).
The state (10) is local for dichotomic projective mea-

surements when q � 1=2. Consider Alice receiving an
observable with eigenvalues �1, which can always be
written as an operator of the form c0 ~x � ~�þ c112 þ R,
where c0; c1 2 ½0; 1�, operators ~x � ~� and 12 act on the
j0i, j1i qubit subspace, and operator R has no support in
the qubit subspace. The protocol is similar to protocol 1.

Alice and Bob share a vector ~�. Alice accepts ~�

with probability j ~x � ~�j, in which case she outputs a ¼
�sgnð ~x � ~�Þ with probability c0, and a random bit other-

wise. If she rejects ~�, she outputs �1 with probability
½1� ðc1 þ TrRÞ=2�=2. Bob receives observable ~y � ~� and

outputs b ¼ sgnð ~y � ~�Þ.
Noting that Alice accepts ~� with probability 1=2

on average, we obtain habi ¼ �c0ð ~x � ~yÞ=2, hai ¼
ðc1 þ TrRÞ=2, and hbi ¼ 0, which is the statistics of di-
chotomic projective measurements on state �E for q ¼
1=2. Next, we apply protocol 2 to �E, taking �A;B ¼
j2ih2j. Hence, the state
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�GM ¼ 1

9
½q�� þ ð3� qÞj2ih2j � 12

2

þ 2q
12

2
� j2ih2j þ ð6� 2qÞj2; 2ih2; 2j� (11)

is local for POVMs for q � 1=2. To reveal the nonlocality
of the above state, we apply filters of the form FA ¼ FB ¼
j0ih0j þ j1ih1j. Hence, after successful filtering, we obtain
a pure singlet state, i.e., ~�GM ¼ ��. By performing suit-
able measurements on ~�GM, Alice and Bob can now get

maximal violation of the CHSH inequality, i.e., S ¼ 2
ffiffiffi
2

p
[19]. Therefore, the state (11) has genuine and maximal
hidden nonlocality.

Note also that applying the above filters to the erasure
state (10) gives a pure singlet state for any q > 0. Thus, the
erasure state with 0< q � 1=2 has hidden nonlocality for
dichotomic measurements. Moreover, for q � 1=6, the
erasure state admits a local model for projective measure-
ments, as can be shown by using protocol 2 [20]. Hence,
such states feature hidden nonlocality for projective
measurements.

To summarize, we have shown the existence of genuine
hidden nonlocality. That is, there exist entangled quantum
states the nonlocality of which can be revealed only via
sequential measurements. In certain cases, this nonlocality
can even be maximal.

In the present Letter, we have focused on Bell tests in
which a single copy of an entangled state is measured in
each run of the experiment. It is, however, also relevant to
consider the case in which several copies of the state can be
measured jointly in each run [21–24]. Notably, it has been
shown recently that nonlocality can be superactivated in
this scenario [25]. That is, by performing judicious joint
measurements on sufficiently many copies of a state �, it
becomes possible to violate a Bell inequality (with non-
sequential measurements), although the state � admits a
local model for POVMs. More generally, this phenomenon
occurs for any entangled state � that is useful for tele-
portation [26]. It is thus interesting to ask whether the
nonlocality of the states considered here could also be
revealed by allowing for many copies to be measured
jointly. However, the current results on superactivation of
quantum nonlocality do not detect the states presented here
[27], thus leaving the question open. Another point worth
mentioning is activation of nonlocality in quantum net-
works. It would also be relevant to see whether the non-
locality of the states presented here can be activated by
placing several copies of them in a quantum network [28].
Concerning the erasure state, Ref. [29] shows that it is a
nonlocal resource when placed in a tripartite network;
hence, the local model constructed here confirms that
activation of nonlocality does indeed occur.

Finally, an interesting open question is whether there
exist entangled states for which nonlocality cannot be
observed, even considering sequential measurements on
an arbitrary number of copies of the state.
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