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We analyze a microscopic origin of the Kondo effect–assisted orbital order in heavy-fermion materials.

By studying the periodic two-orbital Anderson model with two local electrons, we show that frustration of

Hund’s rule coupling due to the Kondo effect leads to an incommensurate spiral orbital and magnetic

order, which exists only inside the Kondo screened (heavy-electron) phase. This spiral state can be

observed in neutron and resonant x-ray scattering measurements in U- and Pr-based heavy-fermion

compounds, and realized in cold atomic gases, e.g., fermionic 173Yb.
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Introduction.—The dichotomy between the localized
and itinerant behavior of electrons in solids often leads to
a rich variety of quantum states of matter with fascinating
physical properties. In some materials 4f or 5f electrons
physically move on and off the ionic site. Even when such
valence fluctuations are suppressed, virtual transitions lead
to hybridization of these electrons with the conduction
band. For one f electron in a single orbital per site, the
resulting Hamiltonian describes an interplay between
Kondo screening of the local spin by the conduction
band (which yields a large Fermi surface with heavy
quasiparticles) and local moment magnetism due to the
long-range Ruderman-Kittel-Kasuya-Yosida (RKKY) in-
teraction. This competition leads to intriguing physics of
heavy fermion (HF) metals and results in complex phase
diagrams [1] including superconducting and magnetically
ordered phases [2].

Materials where localized electrons occupy several
(nearly) degenerate atomic orbitals display an even richer
physics because the orbital degree of freedom becomes an
active participant in establishing the Kondo screened
phase [1,3]. If different orbital configurations are not
related by the time reversal symmetry, the ground state
(GS) of an f-electron ion may have a finite electric multi-
pole moment [4]. The phases associated with long-range
ordering of these multipoles were observed in various
compounds, e.g., antiferroquadrupole states in CeB6

[5,6], PrPb3 [7], and PrIr2Zn20 [8], or octupole order in
NpO2 [9] and Ce0:7La0:3B6 [10]. As a result orbital physics
in f-electron materials has received much recent theoreti-
cal attention [11,12]. It was also suggested that orbital
fluctuations provide a glue for unconventional supercon-
ductivity [13–15], and are responsible for the ‘‘hidden’’
order in URu2Si2 [16–18].

Conventional microscopic mechanisms for the orbital
order in f-electron systems include an RKKY-like
exchange between the multipoles mediated by conduction

electrons [7,19] and a direct Heisenberg-like multipole
interaction arising in the strong-coupling (t-J–like) limit
of a purely f-electron model without the conduction
band [20]. In these cases the Kondo screening and multi-
pole order are antagonistic towards each other. Here we
show that under certain conditions a long-range orbital
order in f-electron materials may exist due to the Kondo
effect.
The low-energy electronic configuration of an

f-electron ion in the lattice is determined by a hierarchy
of energy scales (the j-j coupling scheme) [21]. First, the
atomic spin-orbit interaction and crystal electric field
(CEF) splitting determine the GS multiplet in accordance
with the point symmetry double group [22]. The remaining
degeneracy is partially lifted by the Hund’s rule interac-
tion. For an isolated multiorbital Kondo impurity, the Hund
coupling suppresses the Kondo temperature TK [23,24].
Conversely, formation of the Kondo resonance aims at
restoring the orbital degeneracy thus frustrating the Hund
interaction.
In this Letter we use the above intuition to show that the

competition between Hund coupling and Kondo screening
can give rise to combined orbital and magnetic (generally
incommensurate spiral) orders in Kondo lattices (KLs). We
consider a single-channel two-orbital periodic Anderson
model with two local electrons (the f2 configuration) in the
Kondo regime. In the absence of Hund’s splitting J, the
mixing of high- and low-spin states of an f-electron ion
due to their hybridization with the conduction band yields
an emergent SOð4Þ symmetry of the problem which
involves spin and orbital f-electron degrees of freedom
on an equal footing, and results in a macroscopic degen-
eracy of the Kondo screened GS. For a finite J, this
symmetry is broken down to SUð2Þ and the GS degeneracy
is partially lifted. Quantum fluctuations inside the HF
liquid lead to an effective RKKY-like interaction between
magnetic and orbital degrees of freedom, which stabilizes a
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long-range orbital order. In contrast to the previous works,
this order cannot exist away from the Kondo regime.

Our results are directly applicable to U- and Pr-based
HFs in which tetravalent U4þ and Pr4þ (5f2 and 4f2

configurations, respectively) ions have a �8-type CEF
GS, and the Hund interaction is small compared to the
CEF splitting. They are also relevant for ultracold fermion
gases in optical lattices, especially in light of recent
proposals to realize KL models with either special optical
superlattice structures [25], or alkaline atoms [26]
(e.g., 173Yb).

Emergent SOð4Þ structure in the two-orbital KL
model.—We derive the KL model from a two-orbital
Anderson model with two localized electrons. First, let
us consider a two-orbital Anderson impurity model with
a single conduction channel [27]

H ¼ X
k�

"kc
y
k�ck� þ 1ffiffiffiffi

N
p X

p�a

ðvpac
y
p�fa� þ H:c:Þ

þ ðJ � �fÞNf � JðS2
f þ N2

f=4Þ þUNfðNf � 1Þ=2;
which describes a system of conduction electrons ck� (with
momentum k, spin � ¼ f"; #g, and band dispersion "k)
hybridized with electrons created in two impurity orbitals

by fya� (a ¼ 1; 2) via the orbital-dependent amplitude vpa.

The two orbitals correspond to a CEF GS multiplet with
the binding energy��f < 0. In the above expression, N is

the number of lattice sites, Nf ¼
P

a�f
y
a�fa�, and Sf ¼

ð1=2ÞPaf
y
a����fa� (� are the Pauli matrices) define the

electron number and spin of the impurity, respectively, and
U is the Coulomb repulsion between localized electrons
(for simplicity, we assume identical inter- and intraorbital
interactions). Finally, J > 0 is the strength of Hund’s rule
coupling.

Energy levels Ef for an isolated impurity with J � U�
�f are presented in Fig. 1(a). The GS sextet belongs to the

sector Nf ¼ 2 if 1 < �f=U < 2, and can be broken into

subspaces with total spins Sf ¼ 0 and Sf ¼ 1 each

containing three states, as shown in Table I.
We derive the Kondo Hamiltonian via a generalized

Schrieffer-Wolff transformation [28], ~H ¼ eSHe�S, with
the generator

S ¼ vffiffiffiffi
N

p X
ka�E0

f
Ef

�cyk�PðE0
fÞfa�PðEfÞ

E0
f � Ef

� H:c:

�
; (1)

where Ef in the sum denotes the full set of quantum

numbers fNfSfS
z
fg corresponding to a level with energy

EfðNf; SfÞ, and PðEfÞ ¼ jNfSfS
z
fihNfSfS

z
fj is the projec-

tor on this multiplet. In writing Eq. (1) we took the hybrid-
ization vpa ¼ v to be independent of momentum (as is

usually done in deriving the Kondo Hamiltonian [1]) and
orbital index [29], and assumed that t, v2=U, v � U, �f in

order to omit the conduction electron bandwidth (and
Hund interaction) in the denominators.
The transformation (1) decomposes the Nf ¼ 2 sextet

into a doublet fj00i; jsig and a quartet fj10i; j1� 1i; jaig.
These subspaces have different parities with respect to
interchange of the orbitals (see Table I) and are not coupled
by hybridization with the conduction band. The resulting
six-level ‘‘Kondo’’ Hamiltonian is a direct sum HK ¼
H4 �H2. The termH2 � ð1þ �xÞnc0 has an Ising structure
(nc0 is the conduction electron density at the impurity site),

and does not involve either spin flips in the conduction
channel or transitions between impurity orbital states.
Therefore it is irrelevant for the Kondo physics.
The block H4 contains coupling of the Sf ¼ 1 triplet as

well as the singlet jai to the spin of conduction electrons,
and can be straightforwardly generalized to the lattice

H4 ¼
X
k�

�kc
y
k�ck� þ 2JK

X
i

�is
c
i � 2J

X
i

�iAi: (2)

Here �k ¼ "k ��c, s
c
i ¼ ð1=2Þcyi����ci�, i ¼ xi denotes

lattice sites, the Kondo coupling is JK ¼ 2v2U=½ð�f �
UÞð2U� �fÞ�> 0, chemical potential �c controls the

FIG. 1. Impurity states in the two-orbital Anderson impurity
model. (a) Energies EfðNfÞ vs localized level depth �f in the

absence of Hund’s rule coupling (the Sf argument can be omitted

when J ¼ 0). In the shaded region the GS has exactly Nf ¼ 2

electrons. (b) Fluctuations Sf $ S0f in the Nf ¼ 2 GS due to

hybridization with conduction electrons which contribute to the
transformation (1).

TABLE I. GS multiplet for an isolated impurity with Nf ¼ 2. j0fi denotes a state with no local
fermions.

Sf ¼ 0, Ef ¼ �2�f þUþ J Sf ¼ 1, Ef ¼ �2�f þU� J

j00i ¼ ð1= ffiffiffi
2

p Þðfy1"fy2# � fy1#f
y
2"Þj0fi j1;þ1i ¼ fy1"f

y
2"j0fi

jsi ¼ ð1= ffiffiffi
2

p Þðfy1"fy1# þ fy2"f
y
2#Þj0fi j1;�1i ¼ fy1#f

y
2#j0fi

jai ¼ ð1= ffiffiffi
2

p Þðfy1"fy1# � fy2"f
y
2#Þj0fi j1; 0i ¼ ð1= ffiffiffi

2
p Þðfy1"fy2# þ fy1#f

y
2"Þj0fi
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conduction band filling, and the last term describes singlet-
triplet level splitting due to Hund’s interaction [30].

The vectors �i and Ai are spin-1=2–like objects (�
2
i ¼

A2
i ¼ 3=4) that generate two independent (commuting)

suð2Þ algebras. They can be expressed in terms of the on-

site Hubbard operators XM;a
i ¼ j1Mihaj, Xa;M

i ¼ ðXM;a
i Þy,

and XM0M
i ¼ j1M0ih1Mj as

�i¼ðSiþTiÞ=2; Ai¼ðSi�TiÞ=2;
Sþi ¼ ffiffiffi

2
p ðX0;�1

i þX1;0
i Þ; Tþ

i ¼ ffiffiffi
2

p ðX1;a
i �Xa;�1

i Þ;
Szi ¼X1;1

i �X�1;�1
i ; Tz

i ¼�ðX0;a
i þXa;0

i Þ (3)

with S�i ¼ ðSþi Þy and T�
i ¼ ðTþ

i Þy. By construction Si has
matrix elements only within the spin-triplet sector and
reduces to the S ¼ 1 spin operator in the limit of large J,
while Ti contains transitions between singlet and triplet
local orbital states. Since the Hubbard operators satisfy the
constraint Xa;a þP

MX
M;M ¼ 1, and Xa;a

i ¼ T2
i =3� S2

i =6

and
P

MX
M;M
i ¼ S2

i =2, the last term in Eq. (2) can be
written up to a constant as 2J

P
in

a
i , where n

a
i is the occu-

pation of each singlet state, and hence is the Hund’s energy
cost. From Eq. (2) it follows that spin of conduction
electrons couples not only to the impurity spin S but also
to the orbital component T. This interaction can be viewed
as a special spin-orbit term originating from many-body
correlations.

In the following we will call a state jc 0i orbitally
ordered if hc 0jTijc 0i � 0, and introduce the local

operators for an f-electron ion �
�
i ¼ ð1=2Þ��

��f
y
i;1�fi;2� þ

H:c: which generate transitions between the two orbitals.
One can easily verify that within the quartet subspace
Ti ¼ �i.

Operators Si and Ti generate an soð4Þ algebra [31], and
commutativity of �i and Ai reflects the decomposition
soð4Þ ¼ suð2Þ � suð2Þ. The orbital component T is analo-
gous to the Runge-Lenz vector in the hydrogen atom [32].
This hidden soð4Þ structure of Eq. (2) is distinct from the
explicit SUðMÞ symmetry of the multiorbital Coqblin-
Schrieffer Hamiltonian [33]. A model similar to Eq. (2)
with a single impurity arises in the context of Kondo
tunneling through quantum dots [32,34–36], but to our
knowledge has never been applied to KLs.

Orbitally ordered heavy-fermion state in the two-orbital
KL model.—There are two important observations about
the Hamiltonian (2): (i) despite the GS of each f-electron
site being an Sf ¼ 1 triplet, the conduction electrons are

coupled to a spin-1=2 object �i, and (ii) the Hund’s inter-
action is the only term that involves Ai, and therefore
cannot be neglected. Equation (3) implies that both of these
operators act on physical spin and orbital degrees of free-
dom of the f-electron ions. In the fully Kondo screened
state jHFc�i, �’s form a singlet with the conduction band,
and anymagnetically or orbitally ordered state corresponds
to an ordering of A pseudospins. While magnetic order

may persist outside of the HF regime, the orbital order
exists only inside the Kondo phase.
Indeed, if we treat � and A as classical vectors, Kondo

screening does not occur, and Eq. (2), with J > 0,
describes a double-exchange model [37]. The pseudospins
�i form a spiral whose precise shape depends on the
conduction band filling, ratio JK=t, and lattice topology
[38]. The vectorsAi will follow exactly the same spiral due
to the ferromagnetic Hund’s coupling. Since �i andAi are
always locally parallel, the situation is the same as if J
were infinite, i.e., at each site Sf ¼ 1 with no admixture of

singlet component, which is equivalent to having a pure
spin-1 spiral without orbital order. This is not surprising
because even for an infinitesimal J the local triplet state has
a lower energy than the singlet. The above analysis
shows that a nontrivial orbital order inevitably frustrates
the (ferromagnetic) Hund term in Eq. (2). This local
frustration arises because quantum fluctuations associated
with the Kondo screening dynamically restore orbital
degeneracy by allowing �i to form a singlet with the
conduction band. Below we focus on the regime J � JK
to demonstrate how the competition between the Kondo
effect and Hund’s rule coupling leads to a long-range
orbital order.
Returning to the quantum case, for J ¼ 0 the fields Ai

decouple and the GS of Eq. (2) is macroscopically degen-
erate jc 0ðfAz

i gÞi ¼ jHFc�i � jfAz
i gi, where jfAz

i gi is one
of 2N states which characterize the free Ai pseudospins.
We describe the heavy fermion state jHFc�i using the
hybridization mean-field approach (HMF) [2] with pseu-

dofermion representation �i ¼ ð1=2Þhyi����hi�, and self-

consistently determine the hybridization order parameter

�0 ¼ ð1= ffiffiffi
2

p ÞhHFc�jcyi"hi" þ cyi#hi#jHFc�i. The heavy qua-

siparticle dispersion becomes Ek� ¼ ð1=2Þð�k ��hÞ þ
ð�=2ÞRk, with Rk ¼ ½ð�k þ�hÞ2 þ ð1=2Þð3JK�0Þ2�1=2
and � ¼ �1. The h-fermion chemical potential �h enfor-

ces the constraint ð1=NÞPi�hHFc�jhyi�hi�jHFc�i ¼ 1. The
canonical transformation to the quasiparticle states 	k�� is
given by ck� ¼ cosð
k=2Þ	k;þ;� � sinð
k=2Þ	k;�;� and

hk� ¼ sinð
k=2Þ	k;þ;� þ cosð
k=2Þ	k;�;�, with cos
k ¼
ð�k þ�hÞ=Rk and sin
k ¼ �3JK�0=

ffiffiffi
2

p
Rk.

When J � JK the Hund term in Eq. (2) can be treated
within a second-order perturbation theory yielding
an RKKY-like effective Hamiltonian acting on the
states jfAz

i gi

HA ¼ P0Vð1� P0ÞðEHMF
0 �HHMFÞ�1ð1� P0ÞVP0

¼ X
ij

JRKKYij AiAj;

where P0 is a projector on the degenerate HF GS manifold
and V ¼ �2J

P
i�i �Ai. The Fourier transform of the

exchange interaction JRKKYij ¼ð1=NÞPke
ikðxi�xjÞJRKKYk has

the form (for conduction band filling nc < 1)
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JRKKYk ¼ 2J2

N

X
p

cos2

kþp

2

�
� cos2


p

2 n	p;�
Ekþp;� � Ep;�

þ sin2

p

2 n	p;�
Ekþp;� � Ep;þ

�
; (4)

where n	k� is the quasiparticle distribution function.
The semiclassical order of Ai is determined by the

minima of JRKKYk . Figure 2 shows locations of these min-

ima for several electron fillings on a square lattice with
nearest-neighbor electron hopping t ["k ¼ �2tðcoskx þ
coskyÞ], N ¼ 106 sites, and JK=t ¼ 3. The incommensu-

rate spiral at low filling gives way to a nearly staggered
order and finally, near nc ¼ 0:8, the ordering wave vector
becomes small, possibly due to a Nagaoka-like mechanism
[39]. Since the HF phase is a singlet (hc 0j�ijc 0i ¼ 0),
hc 0jAijc 0i ¼ �hc 0jTijc 0i ¼ hc 0jSijc 0i [see Eq. (3)].

The state jc 0i describes an orbital and real spin spiral of
the same pitch. To the zeroth order in J the occupation of
the singlet jai and each of the triplet levels is identical,
so the orbital order manifests itself more prominently as a
coherent superposition of the triplet and singlet orbital
states, rather than the difference in the occupation num-
bers. For J � 0 the only globally conserved quantity of the
Hamiltonian (2) is the total spin. Hence the symmetry
breaking associated with the onset of orbital order is driven

by the spin sector. The orbital order appears due to the
many-body spin-orbit interaction mentioned earlier.
Discussion.—In multiorbital heavy-fermion materials

the Kondo effect involves both spin and orbital degrees
of freedom. Our results highlight the central role of the
orbital component, that is the exotic Kondo screening of
the pseudo–spin-1=2 object �i which stabilizes nontrivial
orbital order via a many-body spin-orbit interaction.
Formation of the local Kondo singlets competes with
Hund’s rule coupling by enhancing orbital fluctuations
and dynamically restoring orbital degeneracies. This
Hund’s rule frustration is the fundamental mechanism
that leads to a RKKY-like exchange between orbital
degrees of freedom and drives their long-range ordering.
The RKKY interaction obtained in our work exists due to
the Kondo effect, in sharp contrast with theories of the
quadrupolar Kondo effect [7,19,20,40], which contend
that the RKKY coupling between electric quadrupoles
competes with Kondo screening.
Our prediction of coupled orbital and magnetic orders

can be tested in neutron and resonant x-ray scattering
experiments inside the heavy-electron phase of 5f acti-
nide- and Pr-based compounds in which atomic spin-orbit
coupling and CEF stabilize an orbitally degenerate local
GS. The pitch of the spiral is carrier-density dependent
(see Fig. 2) and can be tuned by doping or pressure.
We derived the RKKY interaction (4) for J � JK when

the pseudospin � is Kondo screened while another pseu-
dospin A remains unscreened. For J 	 JK the singlet jai
is separated by an energy gap from the triplet states, and
Eq. (2) reduces to the underscreened S ¼ 1 KL model
studied in Refs. [41,42]. Using a modified HMF theory
[2], it was shown that the system exhibits a coexistence of
the Kondo effect and ferromagnetism. In general, the two

FIG. 2 (color online). Color maps of tJRKKYk =2J2 [Eq. (4)] for
several electron fillings nc. Arrows indicate positions of the
minima corresponding to classical spiral states.

FIG. 3. Schematic phase diagram of the two-orbital KL model.
The phases are the local moment ferromagnet (FM), the ferro-
magnetic Kondo screened phase (Kþ FM), and the orbital and
local-spin spiral state (spiral). The solid line denotes the first-
order phase transition. The dotted line J
ðJKÞ corresponds to a
transition or crossover between Kþ FM and the spiral state.
Shaded ellipses indicate finite Kondo hybridization between
conduction electrons (dark circles) and two f orbitals. The
system size and electron density are N ¼ 1600 and nc ¼ 0:6.
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regimes at small and large J are separated by a quantum
phase transition because local orbitals realize an irreduc-
ible representation of the crystal symmetry group and an
orbital order would break at least this discrete symmetry.
However, in the presence of the strong spin-orbit interac-
tion the phase transition can become a crossover. Figure 3
presents a schematic phase diagram of the Hamiltonian (2)
computed on a square lattice using the mean-field approach
of Ref. [34].

The spiral states obtained in our analysis are semiclas-
sical. Since Ai behaves as a spin-1=2 object, quantum
fluctuations (especially for frustrated materials [43]) may
destabilize static order in favor of quantum disordered
phases. In our case quantum effects may lead to even
more exotic paraorbital states, e.g., combined orbital and
spin liquids, that so far have received little attention.
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