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(Received 28 January 2013; published 7 October 2013)

We study the spin-1=2 quantum Heisenberg antiferromagnet on a Bethe lattice diluted to the percolation

threshold. Dilution creates areas of even or odd sublattice imbalance resulting in ‘‘dangling spins’’

[L. Wang and A.W. Sandvik, Phys. Rev. Lett. 97, 117204 (2006); Phys. Rev. B 81, 054417 (2010)]. These

collectively act as ‘‘emergent’’ spin-1=2 degrees of freedom and are responsible for the creation of a set of

low-lying ‘‘quasidegenerate states.’’ Using density matrix renormalization group calculations, we detect

the presence and location of these emergent spins. We find an effective Hamiltonian of these emergent

spins, with Heisenberg interactions that decay exponentially with the distance between them.
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Introduction.—Quantum spins on percolation clusters [1]
provide an ideal test bed for studying the interplay between
geometrical disorder and quantum fluctuations. The
Hamiltonian for these problems is

H ¼ X
hiji

JSi � Sj; (1)

where Si are Pauli spin-1=2 operators and the sum
runs over nearest-neighbor occupied sites, and J > 0.
Theoretical [2–5] and experimental [6] studies of quantum
spins on diluted square lattices have focused on the question
of whether or not long range order survives up to the
classical percolation threshold pc. A numerical study [4]
has settled this question and found long range order to
be robust to quantum fluctuations, surviving all the way
up to pc.

The excitations are less straightforward. For uniform
lattices with number of sites N, the lowest energy scale
consistent with Néel order breaking a continuous symme-
try is �JN�1, corresponding to a ‘‘tower’’ of states: mix-
tures of symmetry-broken states that become degenerate
in the thermodynamic limit [7–9]. However, a quantum
Monte Carlo study byWang and Sandvik [10] discovered a
somewhat ‘‘anomalous’’ finite size scaling of the spin gap
�low: �low � N�2 (for clusters with a singlet ground state)
or �low � N�1:5 (for generic clusters, most with a non-
singlet ground state). A strong correspondence was shown
[10] between these low-lying states and places on the
cluster where there is a local imbalance between the num-
ber of even and odd sites. It was conjectured that, in each
such place, a spin degree emerges which is effectively
decoupled from the antiferromagnetic order and hence
was called a ‘‘dangling spin.’’

The goal of this Letter is to characterize the dangling-
spin degrees of freedom numerically, relating their nature
to the local geometry of the cluster, and to explain the
observed low-energy spectrum in terms of mediated inter-
actions between dangling spins. Our Hamiltonian is (1) on

clusters obtained by randomly diluting the Bethe lattice of
coordination 3 at its percolation threshold, pc ¼ 1=2 (see
examples of small clusters in Fig. 1). The lack of loops in
the Bethe lattice is conducive for using the density matrix
renormalization group (DMRG) [11] algorithm, as adapted
to generic tree graphs [12], to obtain ground and (some)
excited states.
In the rest of this Letter, we first show that a typical

percolation cluster’s spectrum has a clearly separated low-
energy component, with a multiplicity consistent with the
expected number of weakly coupled spin-1=2 (sometimes
spin-1) dangling spins. We next show that each dangling
spin is somewhat delocalized over a few sites: on the one
hand, we model it as an unpaired spin in a dimerized
background to predict the dangling spin’s nature from the
local geometry; on the other hand, by processing spin

FIG. 1 (color online). Three different percolation clusters (all
of the same size N ¼ 18) are shown with their corresponding
low-energy spectra. The red (dark) and green (light) circles
indicate even and odd sites. The broken dashed lines show dimer
coverings which serve as a heuristic to locate the ‘‘dangling
spins’’ (circled with thick black lines). Energy spectra for each of
the clusters show low-lying quasidegenerate (QD) states sepa-
rated from the continuum by an energy scale�. �QD (not shown)

is a measure of the spread of QD energies.
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expectations we obtain the explicit ‘‘localized state wave
function’’ for each dangling spin. Finally, for each cluster
we construct the effective Hamiltonian of the emergent
dangling spins, consisting of pairwise, unfrustrated
exchange interactions decaying exponentially with separa-
tion, mediated by the background of almost dimerized
spins on the balanced parts of the cluster; this accurately
reproduces the details of that cluster’s low-energy
spectrum.

Exact correspondence between dangling spins and low
energy spectrum.—We carried out DMRG calculations for
several hundred balanced clusters (i.e., having an equal
number of even and odd sublattice sites) [13] for sizes up to
N ¼ 100, targeting multiple excited states in the low-
energy spectrum. Since the number of low-energy states
was found to increase rapidly with an increase in the
number of dangling spins, we restricted our analysis to
the case of four dangling spins [14].

In a typical percolation cluster, we observed a distinct
set of low-lying energy levels we shall call ‘‘quasidegen-
erate’’ (QD) [15] since (we claim) they would be exactly
degenerate in the limit that the dangling spins are fully
decoupled from the rest of the sites. The QD states are
separated from the continuum of higher energy states by a
finite size gap we call � (specifically defined as the differ-
ence between the mean of QD levels and the lowest non-
QD level). The set of QD states is identified by looking at
the difference in energies of consecutive states up to the
quantum rotor excitation and finding the pair of states with
the largest gap. The lower energy state in this pair and all
states below that make up the QD spectrum [16]. The
energy scale characterizing the spread of the QD states
�QD is defined to be the standard deviation of the QD

energies from their mean value. The ratio r ¼ h�QD=�i
(where h:::i indicates an average over disorder) was found
to be small (for example, r ¼ 0:17� 0:1 for N ¼ 50),
justifying our notion of a separation of scales.

Figure 1 also shows a striking correspondence between
the number of low-lying QD states N QD and the number

of dangling spins nd on the percolation cluster. We find that
N QD ¼ 2n1=23n1 , where n1=2 and n1 are integers and

n1=2 þ 2n1 ¼ nd. Our interpretation of this multiplicity is

that 2n1 of the dangling spins pair up to form a moment
with spin 1, while the others remain as spin-1=2 degrees
of freedom. There is thus a one-to-one correspondence
between the low-energy (QD) eigenstates and the Hilbert
space of the posited emergent spins. We used an algorithm
(described later) that relies only on the cluster geometry to
objectively predict the numbers n1=2 and n1 for each clus-

ter, and verified that their predicted relationship withN QD

was satisfied in every cluster.
We also directly measured the lowest singlet-triplet gaps

�low for an ensemble of balanced clusters (for sizes up to
N ¼ 200 and not constraining the number of dangling
spins). Its typical value scales as N�1:9�0:1, which appears

remarkably similar to the scaling previously seen on square
lattice percolation clusters [10].
Locating dangling degrees of freedom in real space.—

Having established the presence of emergent spin-1=2 and
spin-1 degrees of freedom, we now develop two comple-
mentary ways of looking at them.
The first is within the framework of a quantum

monomer-dimer model. We imagine that the wave function
is a product of valence bonds in which the N spins are
paired (dimerized) into singlets to the maximum extent
possible (optimal configuration). Even when even and odd
sites are balanced globally, there remain some uncovered
sites, i.e., monomers, due to local imbalances. These are
spin-1=2 degrees of freedom and (within this picture)
represent the dangling spins. There are multiple ways to
optimally place the monomers; the actual wave function is
imagined to be a superposition of these ways.
Our geometric algorithm, based on the valence bond

framework, finds one element from the set of optimal
dimerizations of the cluster and then attempts to find other
elements of the set by locally replacing monomers with
adjacent dimers. In spirit, this is a ‘‘greedy’’ algorithm
which tries to place dimers wherever possible (to obtain
an optimal dimerization pattern), working from the outer
sites inwards on the cluster.
Given any cluster, there are two operations which cut it

down to a smaller cluster or clusters, such that all optimal
dimerizations on the smaller cluster(s) are in 1-to-1 corre-
spondence with some of the dimerizations on the larger
one. The first operation is that wherever two sites have
coordination 1 or 2, we can remove both (given the dimeri-
zation on the smaller cluster, just insert another dimer to
get the dimerization on the larger one). The second opera-
tion is that wherever we find a pair of adjacent sites with
respective coordinations 3 and 1 (a ‘‘prong’’), we can
always place a dimer on that pair, which fragments the
rest into two subclusters (Fig. 2); a very common special
case is the fork [Fig. 2(a)], at which we can arbitrarily
choose either side to be the prong. These two operations
can be used recursively till only isolated sites remain, each
corresponding to one monomer in the original cluster.
Furthermore, any other optimal dimerization is accessible
from the special one we constructed, by repeatedly
exchanging a monomer with an adjacent dimer.
Amonomer can thus ‘‘hop’’ to sites on the lattice via such

localmonomer-dimer rearrangements as shown in Fig. 2(c).
Our rule of thumb is that two monomers (of the same
sublattice) form a spin 1 moment if and only if they can
approach to the minimal separation of two steps [17].
Our second way to capture the spatial nature of a dan-

gling spin degree of freedom starts from the idea that it
could be adiabatically connected to an uncoupled spin,
analogous to the Landau quasiparticle that is adiabatically
connected to a free electron. Thus, our program is to
label each emergent spin-1=2 degree of freedom by a
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‘‘quasispin’’ operator T�, where the index � labels each
region on the cluster with a local spin imbalance. The T�’s
are idealized as having a spin-1=2 algebra. The actual
quasispin excitation is a composite object involving multi-
spin excitations, localized on a few sites.

Our assumption is that the quasispin quantum numbers
are sufficient to label all the QD states; furthermore, we
expect the action of any spin operator Si, when restricted to
the QD states, practically reduces to a linear combination

of T�’s acting on the quasispins. Specifically, let P̂QD

be the projection operator onto the QD subspace. Let

Si;QD � P̂QDSiP̂QD. Then,

S i;QD ffi X
�

uð�Þi T�; (2)

where each mode uð�Þi has most of its weight on sites within
the region � and is expected to decay rapidly outside [18].

Two operators P̂, Q̂ are said to be orthogonal when their

Frobenius inner product ðP̂; Q̂ÞF � TrðP̂yQ̂Þ is exactly
zero. In this sense, the T� operators are orthogonal to
each other. Since each T� is a quasispin-1=2 operator its
inner product with itself is 1=2 (for each spin component).

In light of Eq. (2), we can also construct a good approxi-

mation ~T� to each operator T� by choosing any represen-
tative site i in the region of � and normalizing the
restriction of its spin operator to the QD states:

~T � � Si;QD=ð
ffiffiffi
2

p jjSi;QDjjÞ; (3)

where jjÔjj � ðÔ; ÔÞ1=2F is the norm of any operator Ô.

Note that the ~T�’s are not orthogonal to each other. A

procedure to construct the T�’s from the ~T�’s will be
discussed later.
Given the proposed relationship of the bare spins to the

quasispins, we discuss two related but independent mea-

surements to recover the mode vectors uð�Þi from numeri-
cally evaluated expectations. First, we consider the
operator overlap !ij between two spins i and j on the

lattice, defined to be

!ij � ðSþi;QD; Sþj;QDÞF: (4)

We substitute our ansatz (2) into (4) and use the operator

orthogonality of the T�’s, to get !ij ¼ P
�u

ð�Þ
i uð�Þj . If we

consider a site i to be well within a dangling region � (i.e.,

uð�Þi is relatively large) then the amplitude on the remaining
sites j (but far away from other dangling regions) is

approximately uð�Þi uð�Þj . Thus, the relative amplitudes of

the mode vector can be recovered by this method.
Our second measurement involves computation of the

intersite spin susceptibility matrix,

�ij ¼
Z 1

0
hŜzi ð�ÞŜzjð0ÞiGSd� ¼ X

n

h0jŜzi jnihnjŜzjj0i
En � E0

; (5)

where � is imaginary time, j0i denotes the ground state,
and En is the energy of an excited state jni [21].
Though the sum runs over all excited states, it can be

well approximated by taking only the states in the QD
subspace. Then �ij can also be expressed in terms of the

mode profiles uð�Þi ,

�ij ¼
X
��

uð�Þi uð�Þj X��;

X�� � X
n2QD

h0jTz
�jnihnjTz

�j0i
En � E0

:

(6)

Consider site iðjÞ in dangling region � (�). From Eq. (6) it

follows that �ij � uð�Þi uð�Þj X��, where the last factor is

independent of sites i, j (so long as we stay within those
regions). Within this approximation, the susceptibility
matrix breaks up into blocks of rank 1 from which we

can immediately pull out the uð�Þi and uð�Þj modes.

Effective Hamiltonian in the quasidegenerate sub-
space.—According to our ansatz (2), there is a one-to-
one correspondence between the QD Hilbert space and
the Hilbert space of a set of abstract quasispin operators
T�. (For simplicity, assume they all have spin 1=2.) The
latter are labeled using an Ising basis j�ti, where t stands
for the quantum numbers ftz1; tz2; . . . ; tzndg, with t� ¼ �1=2.

We want to find the unitary matrix M of coefficients

FIG. 2 (color online). Typical geometricalmotifs in Cayley tree
percolation clusters, as related to monomer or dimer construction.
We disconnect the cluster into ‘‘spans’’ at the ‘‘prong’’ bonds, as
indicated by the (red) cut lines. The (blue) dashed loops indicate
regions with nonzero monomer density. The thickness of the
(gray) bonds is directly proportional to hSi � Sji (with the thickest
bonds having a value of � �0:67). Spatial profiles associated
with ‘‘dangling spins’’ are shown on the subclusters marked
(a)–(d). The area of the black circles is proportional to !ii given
by Eq. (4). (a) shows a ‘‘fork,’’ (b) shows a site surrounded by two
‘‘prongs,’’ (c) shows a subcluster where two monomers on the
same sublattice are present forming an effective spin 1 moment.
The (blue) arrows indicate the monomer is free to hop around
(delocalize) within the subcluster. (d) shows a region where the
spins are ‘‘inert’’ (largely dimerized).
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expressing the QD states jli (in eigenenergy basis) in terms
of the quasispin basis, jli ¼ P

tMltj�ti.
Using ~T� from (3), we define Q̂�1=2

� � ðð1=2Þ � ~Tz
�Þ,

which is almost a projection operator, and let j ~�ti /Qnd
�¼1 Q̂

t�
� jni where jni could be any QD state (that is not

annihilated by the operator prefactors) and j ~�ti is normal-

ized. Finally, define a matrix� by�tt0 � h ~�tj ~�t0 i—which
is almost the identity matrix—and construct the orthonor-

mal quasispin basis of the QD states as j�ti �P
t0 ð��1=2Þtt0 j ~�t0 i. The quasispin operators T� are then

defined so as to have the appropriate matrix elements in
this basis.

Now consider the effective low-energy Hamiltonian
written in terms of the many body eigenstates jli,

H eff �
X
l2QD

Eljlihlj ¼
X
tt0
htt0 j�tih�t0 j; (7)

where El is the eigenenergy of QD state jli, and the matrix
elements htt0 can be calculated since we know the trans-
formation between the bases fjlig and fj�tig. Every term
j�tih�t0 j can be uniquely expressed as a polynomial in the
spin operators fTz

�g and fT�
� g.

The effective Hamiltonian (7) then takes a new form

H eff �
X
�;�

J��T� � T� þmultispin terms: (8)

(The two-spin terms must have this Heisenberg form due to
the exact rotational symmetry retained by the QD states.)

Although the magnitude of J�� depends on the detailed

geometry of the cluster along the path connecting dangling
regions � and �, roughly speaking it decays exponentially
with distance (using as metric the number of steps within
the Bethe lattice, the so-called ‘‘chemical’’ distance). This
is quantified by the scatter plots in Fig. 3, for an ensemble
limited to clusters of equal size N ¼ 100 [22] each having
two dangling spin-1=2 spins (nd ¼ n1=2 ¼ 2). Since each

dangling region is, in general, spread out over multiple

sites, we must define an ‘‘effective distance’’ �d�� �P
ijjuð�Þ

i j2juð�Þj j2dij between two of them, where dij is the

distance between sites i and j belonging to dangling

regions � and �, and the amplitudes uð�Þi for mode � are
normalized.

Figure 3 shows that indeed J�� � J0e
� �d��=	, where

ðJ0; 	Þ � ðþ 0:18ð3Þ; 4:64ð2ÞÞ for a pair of dangling
spins on opposite sublattices, which are always antifer-
romagnetically coupled, or ð� 0:33ð2Þ; 4:61ð3ÞÞ for a pair
on the same sublattice. In the ferromagnetic case, choos-
ing to fit to clusters which do not form a spin 1 moment
gives parameter values closer to the antiferromagnetic
case.
We considered another ensemble (not plotted) of clus-

ters with N ¼ 50 having four dangling spins (nd ¼ 4) and
obtained the effective Hamiltonian using the same pre-
scription. In it, we found, the nonpair terms in (8) typically
account for a weight of at most 5% (using the Frobenius
norm), confirming that the effective Hamiltonian is well
approximated by pairwise Heisenberg exchange (at least in
the limit of dilute monomer concentration).
Conclusion.—The spin-1=2 Heisenberg antiferromagnet

on Bethe lattice percolation clusters has (composite) low-
energy degrees of freedom with the quantum numbers of a
spin, arising wherever there is a local imbalance between
the even and odd sublattices [10]. (A similar imbalance
determines the low-energy spectra of regular Cayley trees
[12].) Each of these emergent dangling spins is associated

with a profile (uð�Þi in the text) that plays the role of a
‘‘spinon wave function’’ [23]. We leave to a future pub-
lication [20] the fundamental reason why a dangling spin
decouples from the rest of the cluster.
Our picture of ‘‘dangling spins’’ can be tested experi-

mentally using local probes. For example, NMR at a
temperature scale between the mediated interactions in
(8) and the bare interactions in (1), in the presence of a
field, gets a line shape mirroring the dangling-spin profile
ui, while zero-field muon spin resonance can detect the
absence of an order parameter on sites away from the
dangling spins.
The dangling spins interact via small, unfrustrated ef-

fective Heisenberg couplings. If one adopts the fitted
exponential decay from Fig. 3 as our definition of the
effective Hamiltonian, it should be possible to study
clusters with thousands of sites and finally explain the
scaling of the spin gap �low with cluster size found in
Refs. [10], by use of the strong disorder renormalization
group method [24].
Finally, we found that spin correlations decay exponen-

tially in balanced regions, which are dimerized, but revived
on the dangling spins. This suggests locally unbalanced
regions may be crucial for the propagation of long range
antiferromagnetic order on percolation clusters.
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FIG. 3 (color online). Effective couplings J12 between two
dangling spins as a function of their effective separation obtained
from clusters having exactly two dangling spins. (a) dangling
spins on opposite sublattices (antiferromagnetic coupling); (b)
on same sublattice (ferromagnetic coupling).
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