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We show that retardation in adjusting an electronic state to an instantaneous internuclear configuration

caused by the finiteness of the electron’s velocity breaks the validity of the Born-Oppenheimer (BO)

approximation at large electron-nuclei distances. This applies even to the ground state. As a result, the BO

approximation in the theory of tunneling ionization of molecules breaks down at sufficiently weak fields.

We also show that to account for nuclear motion the weak-field asymptotic expansion for the tunneling

ionization rate must be restructured. The predictions for the rate using the BO approximation and the

asymptotic expansion are compared with numerical results for a one-dimensional three-body system

modeling a diatomic molecule, with both electronic and nuclear motions treated exactly.
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Tunneling ionization in a static electric field is one of the
fundamental problems of quantum mechanics. In recent
years this problem has attracted a new wave of interest
motivated by its applications in strong-field and attosecond
physics [1]. The theory of tunneling ionization was pio-
neered by Oppenheimer [2] who showed that the ionization

rate � in a field F is proportional to exp½�2ð2IpÞ3=2=3F�,
where Ip is the ionization potential of the system (atomic

units @ ¼ me ¼ jej ¼ 1 are used throughout). The expo-
nent here has a classical origin and is twice the action
accumulated by an electron on its way to the outer turning
point, provided the field is sufficiently weak and the turn-
ing point lies far away from the unperturbed system. It took
three decades before the correct preexponential factor in
the dependence of � on F was obtained for the hydrogen
atom in the ground state [3]. This result was soon gener-
alized to ionization from an arbitrary state in a spherically
symmetric potential [4]. Subsequent studies of the
Coulomb potential [5–8], for which the problem allows a
detailed analysis due to separability of variables in para-
bolic coordinates, revealed the asymptotic nature of these
results. In the tunneling regime ln� can be obtained as an
asymptotic expansion in F, with Oppenheimer’s exponent
giving the leading-order [OðF�1Þ] term. The next two
terms [OðlnFÞ and OðF0Þ] are determined by the asymp-
totic tail of the unperturbed wave function, so tunneling
ionization is said to probe the tail. Further development of
this approach culminated in the weak-field asymptotic
theory (WFAT) [9,10] which extended the results of
Refs. [3,5–8] to arbitrary potentials without any symmetry.
A recent generalization of the WFAT to multielectron
systems in the frozen-nuclei approximation [11] shows
that in this case the many-body character of the problem
does not qualitatively change the asymptotic expansion for
ln�, because the energy spacing between electronic states

of the parent ion is normally of the same order as the
ionization potential.
Rovibrational states of molecules, on the other hand,

have a much denser spectrum. One therefore can expect
that the structure of the asymptotic expansion for the
ionization rate of molecules with nuclear motion taken
into account may differ from that for frozen nuclei. The
Born-Oppenheimer (BO) approximation seems to suggest
a natural framework for incorporating nuclear motion into
the theory [12–14]. However, it is not evident whether this
approximation holds in the tunneling problem. This can be
seen already from the fact that in the BO approximation
the energy required to detach an electron continuously
depends on the internuclear configuration. Is it this
energy, e.g., in the equilibrium configuration of a neutral
molecule, or the true ionization potential corresponding to
a relaxed configuration of the molecular ion that defines
Oppenheimer’s exponent in this case? In this Letter, we
show that there exists a general physical mechanism—
retardation in adjusting the electronic state to an instanta-
neous internuclear configuration—that breaks the validity
of the BO approximation at large electron-nuclei distances,
and this has important consequences for the theory of
tunneling ionization of molecules. This mechanism is
related, of course, to other well-known manifestations of
the breakdown of the BO approximation, e.g., at avoided
crossings [15] and conical intersections [16] of electronic
states and in Rydberg states [17].
Accurate calculation of tunneling ionization rates of

molecules in a static electric field is a challenging compu-
tational task. We are aware of only a few such calculations
for one- [18–22] and two-electron [12] diatomic molecules
with frozen nuclei. The extension of such calculations to
a full quantum-mechanical treatment of nuclear motion
in the three-dimensional case is prohibitively difficult.
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We therefore consider a one-dimensional three-body sys-
tem consisting of two identical heavy particles (nuclei)
with masses M � 1 and charges þ0:5 and an electron
with mass 1 and charge �1. Let x1, x2, and x3 be the
coordinates of the particles in the inertial center-of-mass
frame, Mðx1 þ x2Þ þ x3 ¼ 0. The Schrödinger equation
for the system reads

�
� 1

M

d2

dR2
� 1

2m

d2

dx2
þUðRÞ þ Vðx;RÞ þ Fx� EðFÞ

�

��ðx; RÞ ¼ 0; (1)

where R ¼ x2 � x1 and x ¼ x3=m are the Jacobi coordi-
nates and m ¼ 2M=ð2Mþ 1Þ is the reduced mass of the
electron. The heavy subsystem models a diatomic molecu-
lar ion. Our goal is to analyze the effect of nuclear motion
on tunneling ionization of an electron. To focus on the
electron tunneling, here we exclude the dissociation
channel from consideration. To this end, the internuclear
interaction is modeled by the potential

UðRÞ ¼ A

R2
þ Bþ CR2; (2)

which has a purely discrete spectrum. The coefficients A ¼
0:26, B ¼ �0:732 635, and C ¼ 0:016 25 are chosen to
reproduce the BO potential in H2

þ (Fig. 1). The electron-
nuclear interaction is described by

Vðx;RÞ ¼ Vðxþ R=2Þ þ Vðx� R=2Þ; (3a)

VðxÞ ¼ �a

cosh2ðbxÞ : (3b)

The only reason to use a finite-range potential (3b) is to
simplify the following equations. The BO approximation

corresponds to M ! 1. In this limit m ¼ 1 and the solu-
tion to Eq. (1) takes the form �BOðx; RÞ ¼ c eðx;RÞ�ðRÞ,
where the electronic and nuclear wave functions satisfy

�
� 1

2

d2

dx2
þ Vðx;RÞ þ Fx� EeðR; FÞ

�
c eðx;RÞ ¼ 0 (4)

and

�
� 1

M

d2

dR2
þUðRÞ þ EeðR; FÞ � EBOðFÞ

�
�ðRÞ ¼ 0: (5)

With the coefficients a ¼ 0:62772 and b ¼ 0:857 in
Eq. (3b), the potential in Eq. (5) for F ¼ 0 reproduces
the BO potential in H2 (Fig. 1). We solve these equations
subject to zero boundary conditions �ðx;0Þ¼�ðx;1Þ¼0
in R and outgoing-wave boundary conditions in x. This is
an eigenvalue problem, so the energies EðFÞ, EeðR; FÞ, and
EBOðFÞ depend on field F. It should be noted that, in spite
of all the simplifications in our model, Eq. (1) treats both
electronic and nuclear motions without any approxima-
tions, and this is essential for uncovering important aspects
of tunneling ionization dynamics in molecules.
We first discuss the ground state of the molecule in the

field-free case, F ¼ 0. To solve Eq. (1), we introduce a
complete set of vibrational states of the molecular ion:

�
� 1

M

d2

dR2
þUðRÞ�"v

�
�vðRÞ ¼ 0; v¼ 0;1; . . . : (6)

The solution to Eq. (1) is sought in the form

�ðx; RÞ ¼ X
v

fvðxÞ�vðRÞ: (7)

Substituting this expansion into Eq. (1), we obtain a set of
coupled equations for fvðxÞ which are solved by the slow
variable discretization (SVD) method [25]. The functions
fvðxÞ satisfy

fvðxÞjjxj!1 ¼ gve
�ßvjxj; ßv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m½"v � Eð0Þ�

q
; (8)

where Eð0Þ is the ground-state energy. We wish to compare
the exact wave function with the BO approximation at
large electron-nuclei distances, that is, large x. To do
this, let us introduce the electron density:

�ðxÞ ¼
Z 1

0
�2ðx; RÞdR: (9)

For the present model, �ðxÞ ¼ �ð�xÞ. The behavior of
�ðxÞ is shown in Fig. 2. To facilitate comparison of the
exact and BO results, �ðxÞ is multiplied by e2ß0x, which
compensates the exponential factor in Eq. (8) for the lowest
vibrational channel; without this factor, �ðxÞ rapidly
decays as x grows. From Eqs. (7) and (8) we have
�ðx ! 1Þ ¼ P

vg
2
ve

�2ßvx ! g20e
�2ß0x, so the product

e2ß0x�ðxÞ should monotonically decay and approach a
constant g20 at x ! 1. This is the case for the exact results,

but not for the BO approximation. To emphasize the
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FIG. 1 (color online). Solid lines: BO potentials for the ground
electronic states of H2

þ [23] and H2 [24] as functions of the

internuclear distance R. Dashed lines: present model internuclear
potential UðRÞ (upper) and BO potential for the three-body
system UðRÞ þ EeðR; 0Þ (lower). Dashed-dotted line: present
electronic energy EeðR; 0Þ. Dotted lines: lowest internuclear
�0ðRÞ [upper, Eq. (6)] and BO �ðRÞ [lower, Eq. (5)] vibrational
states for M ¼ mp.
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difference, we show the results for three values of the
nuclear massM equal to fractions of the proton massmp ¼
1836. For M ¼ mp, the error of the BO results is less

dramatic in the interval of x considered, but still reaches
10% at x ¼ 25. We stress that the BO approximation works
well for the energy of the system. Indeed, Eð0Þ and EBOð0Þ
differ only by 0.03% for M ¼ 250, and the difference
decays / 1=M as M grows. It works well also for the
wave function in the region of its localization. But it breaks
down in the asymptotic region x ! 1, and this is the first
of our findings.

To clarify the physical mechanism responsible for the
breakdown of the BO approximation at large electron-
nuclei distances, we consider a time-dependent problem
associated with Eq. (1). Let us temporarily treat the nuclei
classically, and let RðtÞ be the internuclear distance
describing their vibrational motion. Using the retarded
Green function [26], the time-dependent Schrödinger
equation for the electronic wave function c ðx; tÞ can be
presented in the integral form

c ðx; tÞ ¼ �ei�=4
Z

dx0
Z t

�1
Vðx0;Rðt0ÞÞc ðx0; t0Þ e

iSðt0Þdt0ffiffiffiffiffiffiffiffiffiffiffi
2��t

p ;

(10)

where Sðt0Þ is the classical action

Sðt0Þ ¼ ðx� x0Þ2
2�t

� 1

2
Fðxþ x0Þ�t� 1

24
F2�t3; (11)

and �t ¼ t� t0. Let T be the time during which RðtÞ
changes appreciably. It can be estimated by T ¼ 1=2!e,
where the frequency !e is defined by the expansion
UðRÞ þ EeðR; 0Þ � UðR0Þ þ EeðR0; 0Þ þ 1

4M!2
eðR� R0Þ2

and R0 ¼ 1:4 is the equilibrium internuclear distance

(Fig. 1). Note that !e / M�1=2, and hence T / M1=2;
thus, T grows with M. The BO approximation for Eq. (1)
amounts to the adiabatic approximation for Eq. (10). The
asymptotic solution of Eq. (10) for T ! 1 can be obtained
using the procedure developed in Ref. [27] and is given by
c ðx; tÞ ¼ c eðx;RðtÞÞ exp½�i

R
t EeðRðt0Þ; FÞdt0�, where

EeðR; FÞ and c eðx;RÞ are defined by Eq. (4). The deriva-
tion is based on evaluating the time integral in Eq. (10) by
the steepest descent method, with the saddle points t0SP
defined by @Sðt0Þ=@t0 ¼ EeðRðt0Þ; FÞ. The condition of
validity of the adiabatic approximation is jt0SP � tj � T.
For F ¼ 0, there are two saddle points in this region given

by t0SP � t� iðx� x0Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2EeðRðtÞ; 0Þ
p

. As x grows, they

move away from t, and the adiabatic approximation
eventually breaks down. The point xBO where this happens
can be estimated from jt0SP � tj ¼ T. Substituting

EeðRðtÞ; 0Þ � EeðR0; 0Þ � �ß2e=2 and noting that x0 in
Eq. (10) is restricted to the region of localization of
c eðx0;Rðt0ÞÞ, we obtain

xBO ¼ ßeT ¼ ße
2!e

/ M1=2: (12)

This is the distance by which an electron with velocity ße
can depart from the nuclei before their positions change
appreciably. In the region jxj � xBO, the electron has
enough time to adiabatically adjust its state to the instan-
taneous position of the nuclei; that is, retardation caused
by the finiteness of its velocity ße can be neglected. On the
other hand, in the region jxj * xBO, retardation becomes
important and the adiabatic approximation breaks down.
A similar situation in a time-dependent electric field was
discussed in Ref. [27]. Thus, retardation is the reason for
the breakdown of the BO approximation at large x. As seen
from Fig. 2, Eq. (12) gives a good estimate of where this
happens.
In the presence of a field, F > 0, the ground state turns

into a Siegert state [9]. The solution of Eq. (1) is again
sought in the form (7), where fvðxÞ vanish at x ! 1 and
satisfy the outgoing-wave boundary condition

fvðx ! �1Þ ¼ fvm
1=4

ð2FjxjÞ1=4 exp

�
i

3
ðmFÞ1=2ð2jxjÞ3=2

þ i½EðFÞ � "v�ð2mjxjÞ1=2
F1=2

�
: (13)

FIG. 2 (color online). Electron density [Eq. (9)] in the field-
free ground state for three values of M. Solid (dashed) lines:
exact results (BO approximation) for e2ß0x�ðxÞ. Dotted lines: g20,
the value of e2ß0x�ðxÞ at x ! 1. Arrows indicate the boundary of
the region of validity of the BO approximation [Eq. (12)]. Thick
gray lines: exact results for �ðxÞ (right-hand axis).
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The equations for fvðxÞ in this case are solved by the SVD-
based method developed in Ref. [28]. Similar boundary
conditions can be written for Eq. (4). The energies EðFÞ,
EeðR; FÞ, and EBOðFÞ are now complex. Their imaginary
parts define the corresponding ionization rates, � ¼
�2ImE. We now consider realistic values of M equal to
multiples of mp. The results are shown in Fig. 3. To

facilitate comparison of the exact and BO results, the
ionization rate is divided by a rapidly varying field factor
W0ðFÞ defined in Eq. (15b). The BO approximation works
very well at F > FBO, but rapidly departs from the exact
results at F < FBO, and this is our second finding. To
estimate the field FBO where the BO approximation breaks
down, we invoke the argument that has led us to Eq. (12).
For F > 0, there are four saddle points contributing to the
time integral in Eq. (10). For the BO approximation to
hold in the tunneling problem, these points must satisfy
jt0SP � tj< T everywhere in the region jxj< jxFj, where
xF is the turning point defined by FxF ¼ EeðRðtÞ; FÞ. This
requirement is most severe for x ¼ xF. In this case the saddle

points coalesce pairwise at t0SP� t�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2EeðRðtÞ;FÞ

p
=F

and move away from t as F decreases. Substituting
EeðRðtÞ; FÞ � �ß2e=2, the value of FBO can thus be
estimated by

FBO ¼ ße
T

¼ 2!eße / M�1=2: (14)

This is the field in which the time needed for an electron
with initial velocity ße to reach the turning point xF, taking
into account its deacceleration by the field, is equal to T. At
weaker fields, retardation breaks the validity of the BO
approximation in the tunneling problem. As seen from
Fig. 3, Eq. (14) works well. For H2 (M ¼ mp) we have

FBO � 0:05, which belongs to the range of intensities used
in strong-field experiments [1]. The lifetime of the model
H2 at this intensity is 1=�	 10�10 sec. Thus the break-
down of the BO approximation for this molecule should be
observable experimentally. In the general case, the effect is
expected to be more pronounced for larger values of the

adiabatic parameter � � !e=Ip / FBO=Fc, where Fc /
I3=2p is a boundary of over-the-barrier ionization. For
example, �N2

� 0:6�H2
and �CH � �H2

, so the effect can

be observable also in other molecules.
To investigate the behavior of the ionization rate at weak

fields we employ the WFAT [9]. The coefficient fv in
Eq. (13) can be expressed in terms of the coefficient gv
in Eq. (8). By calculating the electronic flux, we obtain

�¼X
v

�v; �v¼jfvj2¼g2vWvðFÞ½1þOðFÞ�; (15a)

WvðFÞ¼ßv
m

exp

�
� 2ß3v
3mF

�
: (15b)

Equation (15a) holds for F � Fc. The error term OðFÞ
indicates that this is an asymptotic expansion in F [7,8,10].
For frozen nuclei, this term for the dominant ionization
channel corresponding to the smallest exponent in
Eq. (15b) exceeds the exponentially suppressed contribu-
tions from electronically excited channels. In this case,
only the dominant channel can be retained in Eq. (15a)
[11]. In the problem with moving nuclei, however, another
small parameter appears given by the electron-to-nuclear
mass ratio 1=M. The energy spacing of excited states

becomes small, "vþ1 � "v ¼ OðM�1=2Þ. The coefficients
gv / h�vj�i are also affected: the maximum of the distri-

bution g2v shifts to larger v ¼ OðM1=2Þ asM grows (Fig. 4).
All this changes the relative role of the different terms in
Eq. (15a), and the contributions from higher channels now
become more important than the term OðFÞ. In this case,
all channels in Eq. (15a) should be retained. Such restruc-
turing of the asymptotic expansion for the ionization rate of
molecules is our third finding. Figure 3 shows that
Eqs. (15) work very well up to F � 0:1. The term �0

with the Oppenheimer exponent [for the present model
Ip ¼ �0 �Eð0Þ ¼ ß20=2m] becomes dominant only at very

weak fields.
To summarize, we have shown that retardation breaks

the validity of the BO approximation in molecules at
large electron-nuclei distances. As a result, the BO

FIG. 3 (color online). Ionization rate of the ground state
divided by W0ðFÞ [Eq. (15b)] for three values of M. Solid
(dashed) lines: exact results (BO approximation). Dashed-dotted
lines: WFAT results [Eqs. (15)]. Dotted lines: g20, the value of

�=W0ðFÞ at F ! 0. Arrows indicate the boundary of the region
of validity of the BO approximation [Eq. (14)]. Thick gray lines:
exact results for the lifetime 1=� (right-hand axis).
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approximation does not correctly describe the electronic
wave function in the field-free case at x * xBO, even for the
ground state. In the tunneling problem, it fails to predict the
correct behavior of the ionization rate at weak fields
F & FBO. Retardation reveals itself in the asymptotic tail
of the electronic wave function, which probably has never
been stressed before, but which is important in tunneling
ionization and some other physical processes. In the typical
situation FBO � Fc, so the properly restructured WFAT
complements the BO approximation in the theory of
tunneling ionization at weak fields.
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