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We consider the role of the internal kinetic energy of bound systems of matter in tests of the Einstein

equivalence principle. Using the gravitational sector of the standard model extension, we show that

stringent limits on equivalence principle violations in antimatter can be indirectly obtained from tests

using bound systems of normal matter. We estimate the bound kinetic energy of nucleons in a range of

light atomic species using Green’s function Monte Carlo calculations, and for heavier species using a

Woods-Saxon model. We survey the sensitivities of existing and planned experimental tests of the

equivalence principle, and report new constraints at the level of between a few parts in 106 and parts in 108

on violations of the equivalence principle for matter and antimatter.
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General relativity follows from the Einstein equivalence
principle (EEP), which holds that in any local Lorentz
frame about any point in spacetime, the laws of physics
are described by the standard model of particle physics and
special relativity [1]. Both general relativity and the stan-
dard model are believed to be the low energy limits of some
as yet unknown complete theory of physics at high energy
scales. Such a theory might generate violations of EEP at
experimentally accessible energy scales [2–4], although its
exact form is unknown. Thus, it is important to search for
EEP violation in as many different places as possible. We
use the standard model extension (SME) [4], a flexible and
widely applied [5] framework for describing violations of
EEP. The SME is an effective field theory that phenomeno-
logically augments the standard model action with terms
that break local Lorentz invariance and other tenets of EEP
[6], while preserving energy conservation, gauge invari-
ance, and general covariance. As in other models [2], EEP
violation in the SME can manifest in multiple ways. In
particular, it may be strongly suppressed in normal matter
relative to antimatter [6,7]. Although the equivalence prin-
ciple has been validated with extremely high precision for
normal matter [8], the situation for antimatter is less clear.

In this Letter, we show that in the SME, EEP violation in
antimatter can be constrained by tests using bound systems
of normal matter. We clearly demonstrate how an anomaly
that violates the weak equivalence principle for free parti-
cles generates anomalous gravitational redshifts in the
energy of systems in which they are bound, in proportion
to the systems’ internal kinetic energy. Using a nuclear
shell model, we estimate the sensitivity of a variety of
atomic nuclei to EEP violation for matter and antimatter,
and illustrate points of commonality between older repre-
sentations of EEP violation based on neutron excess and
baryon number, and that of the SME.We show that existing

experimental [8–17] limits on spin-independent EEP vio-
lation in matter and antimatter [7] are up to ten times
tighter than previously thought, and could be made tighter
still, provided more precise estimates of the bound kinetic
energy of particles in atomic systems. We focus on EEP
violation in conventional matter (made up of protons,
neutrons, and electrons), and as in prior work [5–7],
assume that anomalies affecting force-carrying virtual par-
ticles are negligible. Using general covariance, we define
our coordinates such that photons follow null geodesics,
ensuring that electromagnetic fields do not violate EEP.
In the SME, spin-independent violations of EEP acting

on a test particle of mass mw are described in its action [6]
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where the superscript w ¼ p, n, or e (for proton, neutron,
or electron) indicates the type of particle in question, g�� is

the metric tensor, dx� is the interval between two points in
spacetime, and c is the speed of light. The ð �cwÞ�� tensor

describes a fixed background field that modifies the effec-
tive metric that the particle experiences, and thus, its
inertial mass relative to its gravitational mass. The four-
vector ðaweffÞ� ¼ fð1� U�

c2
Þð �aweffÞ0; ð �aweffÞjg, where U is the

Newtonian potential, represents the particle’s coupling to a
field with a nonmetric interaction�with gravity. As ðaweffÞ�
is CPT odd [4], this term enters with opposite sign in the
action for an antiparticle �w. Both ð �cwÞ�� and ðaweffÞ� vanish

if general relativity is valid. For convenience, Eq. (1)
includes an unobservable scaling of the particle mass by
½1þ 5

3 ð �cwÞ00�.
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We focus on the isotropic subset of this model [6], in
which ð �cwÞ�� is diagonal and traceless, and the spatial

terms in the vector ðaweffÞ� vanish. In this limit, EEP viola-

tion is described by the comparatively poorly constrained
ð �cwÞ00 coefficients [5], and the ð �aweffÞ0 terms, which cannot

be measured in nongravitational experiments [4]. In the
nonrelativistic, Newtonian limit, less the rest mass energy
and assuming that any violations of EEP must be small, the
single particle Hamiltonian produced by the action (1) is
given by

H ¼ 1

2
mwv2 �mw

gU; (2)

where the effective gravitational mass mw
g is given by

mw
g ¼ mw

�
1� 2

3
ð �cwÞ00 þ 2�

mw ð �aweffÞ0
�
:

Experimentally observable EEP violations are proportional
to the particle’s gravitational to inertial mass ratio

mw
g

mw ¼ 1� 2

3
ð �cwÞ00 þ 2�

mw ð �aweffÞ0 � 1þ �w; (3)

and are described here, as elsewhere [7,9,18], by the pa-
rameter �w. From Eq. (3), we see that both ð �cwÞ00 and
ð �aweffÞ0 are responsible for violations of the weak equiva-

lence principle, an aspect of EEP [19], since they produce
particle-dependent rescalings of the effective gravitational
potential. In addition, EEP violation is not apparent in the
nonrelativistic motion of a free particle if �ð �aweffÞ0 ¼ðmw=3Þð �cwÞ00, although it remains manifest in the motion
of the antiparticle �w, for which � �w ¼ �2�=mwð �aweffÞ0 �
2=3ð �cwÞ00, a limit known as the isotropic parachute
model [6]. As we now demonstrate, however, the
antimatter anomaly � �w does contribute to tests involving
nongravitationally bound systems of matter, thanks to the
anomalous gravitational redshift produced by ð �cwÞ00 in the
energies of bound systems.

For a bound system of particles, the total Hamiltonian is
a sum of single-particle Hamiltonians, plus an interaction
energy Vint that is assumed to be free of EEP-violating
terms. As implicit in Eq. (2), we take the system’s squared
center of mass velocity �v2 to be small, and of similar order
as the relevant change �U it explores in the gravitational
potential. Since the system is nongravitationally bound,
however, we cannot assume that the same is true of its
constituent particles. Thus, we must include terms propor-
tional to v2

w;jU=c2 in our Hamiltonian, where vw;j is the

instantaneous velocity of the jth bound particle of species
w. In the limit that �v � vw;j � c, we may approximate

v2
w;j¼ð �vþ�vw;jÞ2� �v2þð�vw;jÞ2, [dropping the mixed

�vð�vw;jÞ terms which make little contribution to the bound

kinetic energy] and obtain

H ¼ Vint þ
X
w

�
1

2
mwNw �v2 �mwNwUð1þ �wÞ

þ 1

2

XNw

j¼1

ð�vw;jÞ2
�
1þ 3U

c2
þ 2U

3c2
ð �cwÞ00

��
: (4)

The second line in Eq. (4) represents the system’s internally
bound kinetic energy Tint, and includes a term that contrib-
utes to the system’s conventional gravitational redshift, as
well as a term proportional to ð �cwÞ00 and the gravitational
potential U. This last term corresponds to an anomalous
gravitational redshift of the bound state energies. To evalu-
ate this term for bound quantum states, we recast it in terms
of the momenta � ~pw;j conjugate to the particle displace-

ments �xw;j ¼ xw;j � �x from the system’s center of mass �x.

The momenta satisfy � ~pw;j ¼ @H=@ð� ~vw;jÞ, and so

ð� ~pw;jÞ ¼ mwð� ~vw;jÞ
�
1þ 3U

c2
þ 2U

3c2
ð �cwÞ00

�
: (5)

The bound kinetic energy Tint in Eq. (4) is, thus,

Tint ¼
X
w

XNw

j¼1

ð�pw;jÞ2
2mw

�
1� 3U

c2
� 2U

3c2
ð �cwÞ00

�
: (6)

Note that, in general, to ensure that the system’s mass defect
is subject to a conventional gravitational redshift in the
absence of EEP violation, Vint must depend upon U. If
EEP is satisfied, the variation of the mass defect m0

A ¼
ðVint þ TintÞ=c2 for a system A in a gravitational potential
U is such that the ratiom0

AðU1Þ=m0
AðU2Þ¼1þðU1�U2Þ=c2.

Because of our initial scaling of the particle mass in Eq. (1),
the factor in parentheses in Eq. (6) contains terms propor-
tional to 1,U,Uð �cwÞ00, but not ð �cwÞ00 alone. This, alongwith
our assumption that Vint is independent of ð �cwÞ00 and ð �aweffÞ0,
implies that the ratio m0

AðU1Þ=m0
AðU2Þ does not generate

additional cross terms in Uð �cwÞ00, and we can, therefore,
write the total Hamiltonian for a bound system A as

H ¼ 1

2
MA �v

2 �MAU

�
1þ �A þ 2

3

X
w

Tw
int

MAc
2
ð �cwÞ00

�
; (7)

where MA ¼ ðPwN
wmwÞ �m0

A incorporates the conven-
tional components of Vint þ Tint, the total kinetic
energy of all w particles in the system is Tw

int ¼P
Nw

j¼1hð�pw;jÞ2=2mwi, and

�A � 1

MA

X
w

Nwmw

�
2�

mw ð �aweffÞ0 �
2

3
ð �cwÞ00

�
: (8)

Since ð �cwÞ00 ¼ �ð3=4Þð�w þ � �wÞ, this demonstrates that
EEP tests using nongravitationally bound systems of normal
matter can constrain phenomena that would otherwise only
be apparent for free antimatter particles.
We now apply Eq. (7) to evaluate the phenomenological

reach of existing experiments using conventional matter.
Violation of EEP is described by six independent parame-
ters. Three for matter: �p, �n, and �e; and three for
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antimatter: � �p, � �n, and � �e. For any particular EEP test
comparing the effects of gravity acting on systems A and
B, the observable anomaly is given by �A � �B, where �A

and �B are defined in Eqs. (7) and (8). Since all high-
precision tests of EEP are performed on charge-neutral
systems, and since normal matter has a substantially similar
ratio of proton to neutron content, the expression for �A �
�B can be usefully expressed in terms of an effective neutron

excess ~�j, effective mass defect ~m0
j, and kinetic energy

components Tw
j;int of the two systems, where

~�j � mn

mp

me þmp

mn Nn
j � Np

j ; (9)

~m0
j � m0

j �
ðmn �mpÞðme þmpÞ

mn Np
j ; (10)

and j 2 fA; Bg. The EEP-violating observable can then be
written in terms of linear combinations of the free particle
(�w) and antiparticle (� �w) anomalies as

�A � �B ¼ ðmnÞ2
ðmnÞ2 þ ðme þmpÞ2

�� ~�A

MA

�
~�B

MB

�
mp�eþp�n

�
�
~m0
A

MA

� ~m0
B

MB

�
�eþpþn

�

� 1

2

X
w

�
Tw
A;int

MAc2
� Tw

B;int

MBc2

�
ð�w þ � �wÞ; (11)

whereMA andMB are the masses of the two test bodies, and

�eþp�n � �eþp �me þmp

mn �n; (12)

�eþpþn � me þmp

mn �eþp þ �n; (13)

in which

�eþp � me

mp �
e þ �p; (14)

after the notation of [6]. We can define a similar set of
terms � �eþ �p, � �eþ �p� �n, and � �eþ �pþ �n for antimatter. Note that
Eq. (11) has a close parallel with older studies of EEP
violation [2], since�

~m0
B

MB

� ~m0
A

MA

�
¼

� ~AB

MB

�
~AA

MA

�
mn; (15)

where the effective baryon number ~Aj is given by

~Aj � Nn
j þ

mp

mn

me þmp

mn Np
j : (16)

Thus, the quantities mp�eþp�n and mn�eþpþn in the SME
may be understood as parametrizing an anomalous gravita-
tional coupling to a given particle’s neutron excess and total
baryon number ‘‘charges’’ [2].

In our prior analysis [7], the kinetic energy of protons
and neutrons bound within a given nucleus was estimated
by treating the nucleons as Fermi gases confined within a

square potential well. This model did not account for the
nucleons’ angular momentum, treated the Coulomb poten-
tial in a heuristic way by shifting the depth of the proton
potential, and did not account for the nucleons’ spin-orbit
interaction. The latter is of particular significance, because
it can affect the occupation number of states with a given
kinetic energy. Here, we improve upon that work by mod-
eling the nucleons as single particles bound within fixed,
spherically symmetric rounded square well potentials.
These Woods-Saxon potentials [20] are taken to be of the
form developed by Schwierz et al. [21]. Nuclide data are
taken from Audi et al. [22], and isotopic abundances (for
deriving the EEP-violating signal in bulk materials) from
Laeter et al. [23]. A complete summary of our calculated
kinetic energies can be found in the Supplemental Material
[24]. Better estimates of the nucleons’ bound kinetic energies
are available for light nuclei using Green’s function
Monte Carlo (GFMC) calculations of the many-nucleon
wave functions for nuclides with A � 12 [25]. The GFMC
estimates of the bound kinetic energy of the constituent
protons and neutrons in 6Li, 7Li, 9Be, 10B, and 12C are
summarized in Table I, and are compared with the corre-
sponding predictions of our Woods-Saxon potential. Using
these estimates, we can determine the contribution of the
matter-sector�eþp�n and antimatter-sector� �eþ �p� �n parame-
ters to any observed violation of EEP in the motion of two
(normal matter) test masses. These contributions are sum-
marized in Fig. 1. Species with particular relevance to exist-
ing or planned tests of EEP [26–32] are explicitly labeled.
In most experiments, �eþp�n is dominant, as it scales

with the neutron excess. The next most accessible are the
�eþpþn term, which scales with the mass defect, and
the antimatter term � �eþ �p� �n, which scales with the excess
of the neutrons’ kinetic energy over that of the protons,
followed by � �eþ �pþ �n. In some cases, (e.g., tests comparing
lead and aluminium [28]) the signal from the antimatter
� �eþ �p� �n may actually be stronger than that from �eþpþn.
These terms represent four of the 6 degrees of freedom
describing isotropic EEP violation, primarily for protons,
neutrons, and their antiparticles. Electronic EEP violation is
described by �e�p þ � �e� �p � � 4

3 ½ð �ceÞ00 � me

mp ð �cpÞ00�, and
has thus far been constrained largely by gravitational redshift

TABLE I. Comparison between calculated bound kinetic en-
ergies (in MeV) of protons and neutrons in light nuclei, obtained
from many-body GFMC calculations [25], and a single-particle
calculation using a modified Woods-Saxon potential.

GFMC Woods-Saxon

Species T
p
int Tn

int T
p
int Tn

int

6Li 77 78 64 65
7Li 88 108 67 84
9Be 124 135 95 112
10B 162 164 116 122
12C 219 219 145 153
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tests [11–16], and tests of local Lorentz invariance [33,34].
The sixth degree of freedom, �e�p�� �e� �p/�ð �apeffÞ0�
�ð �aeeffÞ0, is only observable in tests on charged bodies

[6,18].
Using multivariate normal analysis of the results of an

ensemble of EEP tests, including matter-wave [7,9,10],
clock comparison [11–17], and torsion pendulum experi-
ments [8], we obtain new limits on the five isotropic EEP-
violating degrees of freedom that are observable in neutral
systems, summarized in Table II. These bounds improve
upon prior [7] gravitational constraints on these SME
coefficients by factors of 2 to 10, and are also stated in
terms of the five matter and antimatter �eþp�n, � �eþ �p� �n,
and �e�p þ � �e� �p coefficients. Though the limits reported
in Table II are necessarily model dependent, they are stable

against small variations in the estimated value of Tw=Mc2

for the relevant nuclides, and are consistent with the limits
obtained using substantially different nuclear models [35].
Despite the fact that torsion pendulum tests [8] set limits

on specific combinations of � parameters at the level of
10�12 (having constrained �a=a to the level of 10�13), the
best bounds reported in Table II are at the level of 10�8. This
apparent discrepancy is due to the fact that such tests do not
span the full parameter space considered here. Thus, the
limits on the individual �’s summarized in Table II are
strongly correlated with one another. Analysis of these
correlations reveals that some combinations of the �’s are
indeed constrained at the level of 10�9, 10�11, and 10�12,
thanks tomatter-wave interferometer and torsion pendulum
results. Unfortunately, the specific combinations of �’s
subject to these constraints are sensitive to small errors in
our estimates of the nuclides’ bound kinetic energy, due to
disparities between the precision of torsion pendulums and
of other EEP tests. Formal limits on EEP violation at the
level of an effective field theory like the SME must, there-
fore, await the development ofmore reliable nuclearmodels
[35] or the results of additional high precision EEP tests
presently in development, using matter waves [30–32],
clocks [27], or macroscopic masses [28,29].
We have demonstrated that EEP tests on nongravitation-

ally bound systems of normal particles can set indirect
constraints on EEP violation in antimatter, thanks to the
interaction between the EEP-violating terms and the sys-
tem’s bound kinetic energy. We have explicitly derived the
link between anomalous gravitational redshifts and viola-
tions of the weak equivalence principle. This occurs when-
ever EEP is violated by introducing a particle-specific
metric. In the context of the SME, accounting for these
interactions results in significantly improved constraints on
EEP violation in the standard model Lagrangian, for both
matter and antimatter. The precision of these bounds is
limited by that of existing nuclear models, and uneven
experimental coverage of EEP-violating parameter space.
NewEEP tests with precision comparable to that of existing
torsion pendulum experiments [27–32] may substantially
eliminate this model-dependent limitation. Better nuclear
modeling could also improve limits on EEP violation in the
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FIG. 1 (color online). Scatterplot of the contribution of�eþp�n

and � �eþ �p� �n parameters to observable EEP violation in normal
nuclides with lifetimes in excess of 1 Gyr, when compared to
SiO2, from Eqs. (7) and (8). The anomalous fractional accelera-
tion � ¼ f�eþp�n�eþp�n þ f�eþpþn�eþpþn þ f� �eþ �p� �n� �eþ �p� �n þ
f� �eþ �pþ �n� �eþ �pþ �n. Tests that compare two or more widely separated

species are more sensitive than tests involving neighboring iso-
topes. Plot (a) shows each species’ relative sensitivity to matter-
sector EEP violation, and (b) depicts their sensitivities to
antimatter-sector anomalies. Gray points in (a) indicate the range
of sensitivities obtained without accounting for nucleons’ kinetic
energies. Sensitivities of 6Li, 7Li, 9Be, 10B, and 12C are taken
from GFMC calculations, all others from a Woods-Saxon model
(see Supplemental Material [24]).

TABLE II. Global limits (�106) on isotropic EEP violation,
obtained via multivariate normal analysis on the results of an
ensemble of precision tests of EEP. Limits are stated in the
Sun-centered, celestial equatorial frame [5], and are expressed in
terms of the �w parameters as well as the individual ð �cwÞTT and
�ð �aweffÞT , with ð �aeþp

eff ÞT � ð �aeeffÞT þ ð �apeffÞT . The limits on the

�ð �aweffÞT coefficients are stated in units of GeV/c2.

ð�e�p þ � �e� �pÞ 0:019� 0:037 ð �ceÞTT �0:014� 0:028
�eþp�n �0:013� 0:021 ð �cnÞTT 1:1� 1:4
�eþpþn 2:4� 3:9 ð �cpÞTT 0:24� 0:30
� �eþ �p� �n 1:1� 1:8 �ð �aneffÞT 0:51� 0:64
� �eþ �pþ �n �4:1� 6:7 �ð �aeþp

eff ÞT 0:22� 0:28
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SME by up to 8 orders of magnitude, the pursuit of which
will be the subject of future work.
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