
Bosonic Mott Insulator with Meissner Currents

Alexandru Petrescu1,2 and Karyn Le Hur2

1Department of Physics, Yale University, New Haven, Connecticut 06520, USA
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We introduce a generic bosonic model exemplifying that (spin) Meissner currents can persist in

insulating phases of matter. We consider two species of interacting bosons on a lattice. Our model exhibits

separation of charge (total density) and spin (relative density): the charge sector is gapped in a bosonic

Mott insulator phase with total density one, while the spin sector remains superfluid due to interspecies

conversion. Coupling the spin sector to the gauge fields yields a spin Meissner effect reflecting the long-

range spin superfluid coherence. We investigate the resulting phase diagram and describe other possible

spin phases of matter in the Mott regime possessing chiral currents as well as a spin-density wave phase.

The model presented here is realizable in Josephson junction arrays and in cold atom experiments.
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Interacting bosons in magnetic fields exhibit a range
of interesting phenomena, from field expulsion in the
Meissner-Ochsenfeld effect of superconductivity [1–3] to
the realization of topologically ordered states [4]. The
realization of ultracold atomic systems allows us to metic-
ulously engineer such exotic phases of matter, in particular,
through the realization of synthetic gauge fields [5–8].
The presence of multiple particle species has also been
addressed [9–11]. Analogous phase transitions have been
studied with Josephson-junction arrays in real magnetic
fields [12–15]. With respect to systems with multiple
species of particles, the phenomenon of interspecies
coherence has been explored in Bose-Einstein condensates
[16,17], bilayers of dipolar Fermi gases [18], quantum Hall
bilayers [19], excitons in quantum wells [20], and bilayer
graphene [21], polariton condensates [22]. Interspecies
coherence and spin-charge separation have been studied
for bosons [23–27], giving rise to a Meissner effect in the
superfluid regime [23]. Similar physics has been studied
with fermions [28]. Bosonic systems with time-reversal
symmetry breaking and spin-charge separation yield rich
phase diagrams [29–33].

In this Letter, we put such ingredients together and
reexplore the phenomenon of spin and charge separation
in a two-species bosonic system [26] incorporating the
presence of (artificial) gauge fields.

In optical lattices, a transition between a bosonic super-
fluid to a Mott insulator has been observed experimentally
[34], in agreement with theory [35,36], as well as disorder
effects resulting in glassy phases [35,37,38]. Here, we
restrict ourselves to a Mott insulating regime with total
density one. The system under consideration constitutes an
example of a time-reversal symmetry breaking Mott phase
of bosons with chiral pseudospin currents. A prerequisite is
the phase coherence between the two species which is
realized by Josephson coupling, and explicitly breaks the
Uð1Þ phase symmetry. Counter-flowing spin Meissner

currents with zero net charge transfer can be induced by
low-flux artificial magnetic fields. Our main result is a
proof that the Meissner currents subsist as the system
enters the total density Mott phase independently of the
dimensionality of the system.
We consider two species of interacting lattice bosons

where the conversion term mimics the Josephson-type
coupling. In a generic gauge field, the Hamiltonian reads

H¼�t
X
�;hiji

eiaA
�
ijby�ib�j�g

X
�;i

e�ia0A?iby2ib1iþH:c:;

þU

2

X
�;i

n�iðn�i�1ÞþV?
X
i

n1in2i��
X
�i

n�i: (1)

aA�
ij is the Peierls phase acquired by a particle of species

� ¼ 1, 2, and a0A?i the phase acquired upon species
conversion. Within our notations, a and a0 depict lattice
spacing in the longitudinal and transverse directions,
respectively (see Fig. 1). The model in Eq. (1) exhibits
the Mott insulator to superfluid phase transition mentioned
earlier. The phase boundaries can be calculated using
variational mean-field theory and, for a one-dimensional
lattice, exact density matrix renormalization methods [39]
(these approaches are summarized in the Supplemental
Material [40]). The Mott insulator is unambiguously char-
acterized by vanishing total density fluctuations. In the
limit of hard-core bosons (U ! þ1), increasing either
the interspecies coupling V? or the conversion g from
zero is sufficient for the existence of the Mott phase with
� ¼ 1; the limits of Mott phase for vanishing kinetic terms
are � ¼ �g and � ¼ V? þ g. On the superfluid side,
bosons condense (quasicondense in one dimension).
Interspecies phase coherence can still remain in the Mott

phase, hby1b2i � 0, due to the Josephson coupling.

We define Meissner currents to satisfy the twofold con-
dition: 1. vanishing between the species (there is no current
proportional to g); 2. nonzero for the same species, and
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proportional to minus the Peierls phase acquired by a
particle. The current of the relative density operator
_n1i � _n2i separates into intraspecies and interspecies
components j� ¼ jkði ! jÞ þ j?ðiÞ; these are

jk ¼ itð�eiaA
1
ijby1ib1j þ eiaA

2
ijby2ib2jÞ þ H:c:;

j? ¼ �2igby1ib2ie
ia0A?i þ H:c:

(2)

Outside the Mott lobe, the phase-angle representation is

justified by1;2i ¼
ffiffiffi
n

p
ei�1;2i [in this reasoning, n ¼ �=2 rep-

resents the mean (superfluid) density in each species].
The conversion takes the form of a Josephson coupling

� g cosða0A?i þ �1i � �2iÞ: (3)

For strong g, the superfluid phases will be pinned by this
term such that a0A?i þ �1i � �2i ¼ 0. Then j? vanishes
and furthermore, in the small field limit, we may expand to
obtain the Meissner form of the intraspecies current

hjki ¼ �2tn phaseij: (4)

We have defined the phase around a plaquette, phaseij ¼
ðA2

ij � A1
ijÞaþ ðA?i � A?jÞa0, which is invariant under

a lattice gauge transform with scalars ’�
i , A�

ij ! A�
ijþ

ð’�
j � ’�

i Þ=a and A?i!A?iþð’2
i �’1

i Þ=a0. As expected,
there is a Meissner effect in the superfluid sector in the low
field limit, as checked in Ref. [23], for example, in the
specific case of one-dimensional systems.

In fact, as we argue below, the same remains true inside
the Mott phase with total density � ¼ 1. To show this, we

place ourselves in the limit of large Mott gap favored by
the interplay between the prominent Hubbard term U
and the interspecies repulsion V?. In this Mott phase at
� ¼ 1, the density � ¼ ðn1 þ n2Þ is not fluctuating. The
limit of strong interactions has been achieved in ultracold
atoms [41]. A gauged spin- 12 model is easily obtained in

the limit of strong interactions, as summarized in the
Supplemental Material [40]. The two species are the
Schwinger bosons in the representation of spin �=2 opera-

tors. The relative density corresponds to �z ¼ by1b1 �
by2b2. As demonstrated in boson language, �z fluctuates

in the Mott phase. This is due to a transverse magnetic field
in the x� y plane, �g cosða0A?iÞ�x

i þ g sinða0A?iÞ�y
i .

(We have used �x¼by1b2þH:c: and �y¼�iby1b2þH:c:).

The generic Hamiltonian for pseudospin that we
obtain is

H� ¼ �X
hiji

½2Jxxð�þ
i �

�
j e

iaA�
ij þ H:c:Þ � Jz�

i
z�

j
z�

� g
X
i

½�x
i cosða0A?iÞ � �y

i sinða0A?iÞ�; (5)

with Jxx ¼ ðt2=V?Þ and Jz ¼ t2½�ð2=UÞ þ ð1=V?Þ�, and
A� ¼ A1 � A2. Setting V? ¼ U=2 or Jz ¼ 0 yields the
gapless XY phase of Eq. (5) and the Heisenberg antiferro-
magnetic chain is reached for U ! þ1. In the absence of
gauge fields, the XY term is ferromagnetic. For experimen-
tally feasible values, the Ising term is antiferromagnetic
(Jz > 0). These types of spin models have been addressed
in various contexts [28,42–44].
At weak Ising interactions, the ferromagnetic XY order

corresponds to superpositions �by1 þ �by2 . These are just
two distinct regimes for the unit density Mott phase of
Fig. 1. The pseudospin current associated with �z is

jk ¼ 2Jxx½cosðA�
ijÞð�y

i �
x
j � �x

i �
y
jÞ

þ sinðA�
ijÞð�x

i �
x
j þ �y

i�
y
jÞ�;

j? ¼ �2g½cosða0A?iÞ�y
i þ sinða0A?iÞ�x

i �:
(6)

Considering the XY ordered phase, we define the
expectation values of spin operators in this state as
h�x

i i ¼ cosð��iÞ and h�y
i i ¼ sinð��iÞ (we define ��i ¼

�1i � �2i). A minimization of the resulting variational
energy for strong g shows that these phases are pinned
��i þ a0A?i ¼ 0. Then, interspecies current hj?i ¼
2g sinð��i þ a0A?iÞ vanishes, and a similar Meissner cur-
rent to that of Eq. (4) is obtained, hjki ¼ �2Jxx phaseij:

This strong coupling form is analogous to the form of
Eq. (4) computed in the superfluid phase, where Jxx has
replaced the kinetic term t. The condition of strong g
coupling is in fact naturally achieved via renormalization
group arguments. Associated with the spin-charge separa-
tion, there are two relevant energy scales, the Mott scale
and the scale associated with phase coherence or the

FIG. 1. Phase diagram for the effective gauged spin- 12 model in
Eq. (5) built for large repulsive terms U and V?. In the XY limit,
depending on flux, there is a spin Meissner phase or a vortex
lattice phase (the direction of current patterns is shown in each
phase). The inset shows the Mott lobe with total density � ¼ 1 of
interest, obtained using the density matrix renormalization group
method for the one-dimensional model. The dashed line is the
mean-field theory result.
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Meissner effect, on which two-point correlations of

by1b2 are observable. In the strongly interacting regime

ðU;V?Þ � ðt; gÞ, the Mott energy scale is formally
‘‘infinite’’ compared to the scale of the Meissner phase.

Considering first the one-dimensional limit, we use the
technique of bosonization and a renormalization-group
treatment to draw the phase diagram of the model in
Eq. (5). The standard treatment is to express the spin 1

2

operators in terms of fermion field operators via the
Jordan-Wigner transformation [37,45,46]. The resulting
free part of the Hamiltonian has dispersion �k ¼
�4Jxx cosðka� �Þ and Fermi velocity vF ¼ j4aJxxj.
Within our notations, the flux � reads ‘‘phaseiiþ1’’, and
the Fermi surface is delimited by kF ¼ �ð	=2aÞ þ ð�=aÞ
for the half filled band with an additional flux. The Ising
term produces next neighbor interactions.

The low-energy spectrum is then mapped to a continuum
bosonic theory [37,45,46]. Introducing fields 
�, �� with
commutator ½r��ðxÞ; 
�ðx0Þ� ¼ �i	�ðx� x0Þ, the con-
tinuum Hamiltonian has the form

H� ¼ 1

2	

Z
dx

�
u�K�ðr�� � A�Þ2 þ u�

K�

ðr
�Þ2
�

� 2Jz
ð	2aÞ

Z
dx cosð4
�Þ � 2gffiffiffiffiffiffiffi

2	
p

a

Z
dx cos½ð��ðxÞ

þ a0A?�½1þ ð�1Þx=a cos2
��: (7)

The sine-Gordon term in Eq. (7) has been approximated
by keeping only q� 0 terms in the density operators.

The speed of sound is u� ¼ vF½1þ 16aJz=	vF�1=2; the
Luttinger parameter K� ¼ ½1þ 16aJz=	vF��ð1=2Þ is a
measure of interaction strength. K� ¼ 1 for the xy limit
and decreases as antiferromagnetic Jz > 0 is turned on.
Gauge invariance can be checked simply by shifts of
�� ! �� þ ’.

We now turn to the phase diagram in Fig. 1 for our
effective model. Whenever Jz > Jxx, dominant Ising inter-
actions induce an antiferromagnetic spin density wave and
there is no (Meissner) current. The corresponding inset
shows a charge density wave of the bosons b1;2, depicted
as localized in two layers. The 
�-dependent sine-Gordon
term is irrelevant if K� > 1

2 , or Jz < Jxx. The remaining

sine-Gordon term is / g cosð�� þ �ðx=aÞÞ, where we have
chosen the Landau gauge with all flux on the conversion
term. For infinitesimal flux, we may neglect the influence
of �. For K� > 1

8 , this term flows to strong coupling, and it

is associated with the following energy gap [40] (we define
g� ¼ ga=u�)

�� � u�
a
g1=2�ð1=4K�Þ
� : (8)

This expression assumes that the bare value of g � Jxx.
For nonzero fluxes �, the energy scale in Eq. (8) defines
the critical flux �c at which the system undergoes a
transition to a vortex lattice phase of the commensurate-
incommensurate type [37]. Below this critical field, the

phase is the spin-Meissner low-field Mott phase, charac-
terized by zero interspecies (or bulk) currents and
counterflowing intraspecies currents. The following

correlation function h�þðxÞ��ð0Þi � he�i��ðxÞeþi��ð0Þi �
he�i��ðxÞihei��ð0Þi is asymptotically constant at large dis-
tances. This situation corresponds to XY order polarized
(definite h��i) due to the in-plane field g. To return to
the original boson operators, �� ¼ 0 corresponds to a

‘‘bonding’’ state produced by the operator ðby1 þ by2 Þ=
ffiffiffi
2

p
.

Above the critical field �c, currents organize in a vortex
lattice, corresponding to commensurate values of the flux
[23]. A flux of ðp=qÞ2	 corresponds to p vortices in q unit
cells as found from the expectation value of the current
operator hj?i / g sinðð	=qÞ þ ð2	p=qÞðx=aÞÞ. When the
flux is further increased to half the elementary flux
per plaquette, � ¼ 	, the sine-Gordon term oscillates

ð�1Þx=ag cosð��Þ and is naively irrelevant, but at second
order in perturbation theory [23], the oscillatory part
disappears and the contribution is proportional to
ðg2=u�Þ cosð2��Þ. This pins the field �� to a new minimum

which gives a staggered current configuration hj?i /
ð�1Þx=a as shown in Fig. 1 (horizontal line at � ¼ 	).
This phase corresponds to the ‘‘chiral Mott insulator’’
phase of boson ladders discussed in Ref. [31], and which
exists in fermion ladders at weak field [28]. For complete-
ness, we have checked the precise Meissner current pattern
by exact diagonalization of small systems. Each species is
localized in one of two chains composing a ladder. We
have considered ladders of up to ten rungs. We confirmed
numerically the Meissner current of Eq. (4), at small flux,
as well as the vortex lattice and staggered current configu-
rations depicted as insets in the phase diagram of Fig. 1.
The derivation of the effective XY model of Eq. (7) can

be extended to dþ 1 dimensions via a variational approach
(See Supplemental Material at Ref. [40]; to substantiate
our analysis of two dimensional systems, we also consider
an array of coupled ladders). Starting from Eq. (5), we
introduce the following pseudospin coherent state jc i¼Q

iðcos
�ij "iiþei��i sin
�ij #iiÞ. The azimuthal and polar
angles are 2
� and ��, respectively. Expanding about a
saddle point corresponding to XY order, taking the con-
tinuum limit and expanding in gradients, we arrive at the
following continuum Hamiltonian

H�½��;
�� ¼ 1

2

Z ddx

ad�2
Jxxðr�� � A�Þ2

�
Z ddx

ad
g cosð�� þ a0A?Þ: (9)

Firstly, if we restore the quantum character of ��, 
�,
this form is identical to the one of Eq. (7) in the one-
dimensional limit with Jz taken to zero. In addition, the
argument proving the existence of the Meissner current
was independent of dimension.
Secondly, viewing Eq. (9) as the energy of a classical

two-dimensional system, the first term in Eq. (9) can be
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rewritten as 1
2

R
d2x��½r��ðxÞ � A��2,where �� � Jxx is

the pseudospin rigidity, which is accessible experimentally.
This gauged XY model undergoes a Berezinskii-Kosterlitz-
Thouless transition: below TBKT � �� ¼ Jxx, there is a
phase of bound vortex-antivortex pairs.

Thirdly, we could consider alternate gauge field configu-
rations in this two-dimensional system [47,48]. If the
magnetic field is normal to the plane, interspecies currents
vanish, while intraspecies currents follow the curl of the
gauge field. If the field is uniform, intralayer currents
cancel in the bulk but not on the sample boundary. The
edge state currents in the two layers are parallel flowing,
giving nonzero density current and zero pseudospin cur-
rent. Consequently, such edge currents would be observ-
able in the superfluid phase, but not in the Mott phase,
unlike the spin-Meissner currents discussed so far. More
details on gauge field configurations are offered in the
Supplemental Material [40].

Finally, let us note that compared to the energy gap of
Eq. (8), the Mott energy scale dominates, �� � ��, con-

sistent with our assumptions of strong coupling. There is a
distinct regime in which the Mott and phase coherence
energy scales are inverted. Previous work on two-leg
bosonic ladders has shown that it is possible to achieve
the Mott transition at significantly lower energy scales than
the phase coherence:�� � �� [23–25]. This occurs in the

regime of weakly coupled chains where g is perturbative

compared to all other energy scales. Defining ��;� ¼
ð�1 � �2Þ=

ffiffiffi
2

p
together with the canonically conjugate


�;� ¼ ð
1 �
2Þ=
ffiffiffi
2

p
, the one-dimensional limit of

the system in Eq. (1) reduces to a sum of Luttinger

liquid Hamiltonians represented by parameters K�;� �ffiffiffiffiffiffiffiffiffi
t=U

p ð1� V?=UÞ�1=2 and u�;� ¼ a
ffiffiffiffiffiffi
tU

p ð1� V?=UÞ1=2
(plus corresponds to �) for relatively weak interactions.
Additionally, there is a sine-Gordon term of the form

g cosð ffiffiffi
2

p
�� þ a0A?Þ½1þ 2 cosð ffiffiffi

8
p


�Þ� [24].
Renormalization-group equations show that the �� field

becomes gapped first, leading to asymptotically constant
correlation functions as in the strongly interacting case.
Apart from the difference in parameters, the energy gap
below which the correlations have this property is given by
Eq. (8) with 1=4K� being replaced by 1=2K� [23]. On

energy scales below ��, the term in cosð ffiffiffi
8

p

�Þ remains.

The Mott gap takes the form (g� ¼ ga=u�)

�� ���g
1=ð2�2K�Þ
� : (10)

Since, as compared to the strongly interacting regime, the
two energy scales are inverted, �� � ��, observation of

the Mott phase along with the Meissner phase requires
probing correlators at very low energy scales ��. This

can be improved by increasing V?, which lifts both energy
scales �� and ��. This is consistent with our conclusion

that V? favors the � ¼ 1 Mott phase, according to the

phase diagram of Fig. 1. The introduction of anisotropies
drives down the energy scale ��. Such anisotropies can be
between hopping terms t1 � t2 or intraspecies interactions
U1 � U2. In this sense, the isotropic case introduced in
Eq. (1) is optimal.
Firstly, the setup presented here has long been pos-

sible with Josephson junction arrays [12,13]. We present
such a realization with realistic experimental estimates
in the Supplemental Material [40]. An early study of the
vortex lattice in Josephson-junction arrays, but without
considering the Mott transition, has been performed in
Ref. [49]. In the simplest realization, each species cor-
responds to a Josephson junction chain. The chains are
coupled through a Josephson coupling as well as a
visible capacitive interaction and there is a real mag-
netic field threading the interchain plaquettes. The pre-
requisite of one Cooper pair per rung necessary to
access the Mott phase can be achieved through current
technology [50]. Another realization of the Hamiltonian
of Eq. (5) can be obtained as proposed in Ref. [44], by
placing an array of Josephson junctions in the vicinity
of a bulk superconductor. The spin degree of freedom
then describes total density fluctuations on the super-
conducting islands.
Secondly, with cold atoms a one-dimensional setup is

possible [51]. Recently, staggered artificial gauge fields
have been realized [6,7]. Very recently, uniform artificial
magnetic fields have been realized [8]: 87Rb atoms have
been loaded into tilted optical square lattices; the tilt in one
direction suppressed the hopping due to a detuning
between neighboring sites. An additional pair of lasers
whose detuning was matched to that of the tilt reinstated
a complex hopping term, which mimics the Peierls phases
acquired by charged particles in a magnetic field.
Implementation of a two-leg ladder based on this system
requires merely confining the condensate to two columns
by use of a parabolic potential.
In general the on site interactions dominate V? � U

[36]. Interspecies interaction can be enhanced by the
introduction of an additional fermion species that

interacts with the bosons Hf ¼ �P
hijitff

y
i fj þ H:c:,

Hbf ¼ V
P

�in�infi. Integration of the fermions leaves

bosons with repulsive interaction interspecies. This
reads V2a=ð4	jvFjÞ

P
��0in�in�0i, where � denotes spe-

cies. Longer-range interaction with the fermions induces
longer-range interaction between the bosons. Alternatively,
the V? is currently realizable with dipolar interactions
[52]. In cold atom experiments, the Mott insulating phase
can be probed by measuring local density fluctuations [53]
h�2

i i � h�ii2. The Meissner phase is characterized by non-
vanishing relative density fluctations h�2

i i � h�ii2. Both
can be accessed with in situ measurements [54] whereas
the total density is locked. Currents can be probed by
studying density modulations following anisotropic
quenching of the kinetic energy [55]. Additionally, the
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vortex lattice can be imaged in an ultracold 87Rb gas [56].
The current response in the spin sector to a magnetic field
is given by Eq. (4), which is the Meissner response. More
details on the cold atom realization are discussed in the
Supplemental Material [40]

To summarize, it is possible to realize a bosonic insulat-
ing phase with a spontaneous and persistent response
which directly opposes the magnetic field in a case of a
two-component bosonic Hubbard model with total density
one. The associated fluxon quantization in a loop type
geometry encodes topological aspects of the spin super-
fluid. The phase coherence in the Mott insulating regime
can be analyzed with current technology in ultracold atoms
[57]. In the strong-field limit where the spin Meissner
effect is impossible, we recover the chiral Mott phase
with a staggered current pattern found in Ref. [31]. Our
analysis could be extended to high-Tc superconductors in
the underdoped regime [58–62] and to low-dimensional
symmetry protected topological phases [63,64].
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B. Paredes, arXiv:1306.1190.

[5] A. L. Fetter, Rev. Mod. Phys. 81, 647 (2009); J. Dalibard,
F. Gerbier, G. Juzeliünas, and P. Ohberg, Rev. Mod. Phys.
83, 1523 (2011); D. Jaksch and P. Zoller, Ann. Phys.
(Amsterdam) 315, 52 (2005); K. Osterloh, M. Baig, L.
Santos, P. Zoller, and M. Lewenstein, Phys. Rev. Lett. 95,
010403 (2005); Y.-J. Lin, R. L. Compton, K. Jiménez-
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A. Browaeys, D. Cho, K. Helmerson, S. L. Rolston, and
W.D. Phillips, J. Phys. B 35, 3095 (2002); T. Jacqmin, B.
Fang, T. Berrada, T. Roscilde, and I. Bouchoule, Phys.
Rev. A 86, 043626 (2012).

[52] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and
T. Pfau, Rep. Prog. Phys. 72, 126401 (2009).

[53] J. Esteve, J.-B. Trebbia, T. Schumm, A. Aspect, C.
Westbrook, and I. Bouchoule, Phys. Rev. Lett. 96,
130403 (2006).

[54] N. Gemelke, X. Zhang, C.-L. Hung, and C. Chin, Nature
(London) 460, 995 (2009).

[55] M. Killi, S. Trotzky, and A. Paramekanti, Phys. Rev. A 86,
063632 (2012).

[56] K.W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard,
Phys. Rev. Lett. 84, 806 (2000).

[57] F. Gerbier, A. Widera, S. Fölling, O. Mandel, T. Gericke,
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