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We construct analytically, a new family of null solutions to Maxwell’s equations in free space whose

field lines encode all torus knots and links. The evolution of these null fields, analogous to a compressible

flow along the Poynting vector that is shear free, preserves the topology of the knots and links. Our

approach combines the construction of null fields with complex polynomials on S3. We examine and

illustrate the geometry and evolution of the solutions, making manifest the structure of nested knotted tori

filled by the field lines.
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Knots and the application of mathematical knot theory
to space-filling fields are enriching our understanding of a
variety of physical phenomena with examples in fluid
dynamics [1–3], statistical mechanics [4], and quantum
field theory [5], to cite a few. Knotted structures embedded
in physical fields, previously only imagined in theoretical
proposals such as Lord Kelvin’s vortex atom hypothesis
[6], have in recent years become experimentally accessible
in a variety of physical systems, for example, in the vortex
lines of a fluid [7–9], the topological defect lines in liquid
crystals [10,11], singular lines of optical fields [12], mag-
netic field lines in electromagnetic fields [13–15], and in
spinor Bose-Einstein condensates [16]. Furthermore, nu-
merical simulations have shown that stable knotlike
structures arise in the Skyrme-Faddeev model [17,18],
and consequently in triplet superconductors [19,20] and
charged Bose condensates [21]. Analytical solutions for
such excitations, however, are difficult to construct owing
to the inherent nonlinearity in most dynamical fields and
have therefore remained elusive.

An exception is a particularly elegant solution to
Maxwell’s equations in free space (see Fig. 1), brought to
light by Rañada [22], which provides an encouraging
manifestation of a persistent nontrivial topological struc-
ture in a linear field theory. This solution, referred to as the
Hopfion solution for the rest of the Letter, can furthermore
be experimentally realized using tightly focused Laguerre-
Gaussian beams [14].

In this Letter, we present the first example of a family of
exact knotted solutions to Maxwell’s equations in free
space, with the electric and magnetic field lines encoding
all torus knots and links, which persist for all time. The
unique combination of experimental potential and oppor-
tunity for analytical study makes light an ideal candidate
for studying knotted field configurations and furthermore, a
means of potentially transferring knottedness to matter.

In the case of the Hopfion solution illustrated in Fig. 1,
the electric, magnetic, and Poynting field lines exhibit a

remarkable structure known as a Hopf fibration, with each
field line forming a closed loop such that any two loops are
linked. At time t ¼ 0, each of the electric, magnetic, and
Poynting field lines have identical structure (that of a Hopf
fibration), oriented in space so that they are mutually
orthogonal to each other. The topology of these structures
is preserved with time, as the electric and magnetic field
lines evolve like unbreakable filaments embedded in a fluid
flow, stretching and deforming while retaining their iden-
tity [15,23]. The Poynting field lines evolve instead via a
rigid translation along the z axis. The Hopfion solution
has been rediscovered and studied in several contexts
[14,22,24–27] and can be constructed in many ways using
complex scalar maps, spinors, twistors.
Despite numerous attempts at generalizing the Hopfion

solution to light fields encoding more complex knots, the
problem of constructing light fields encoding knots that are
preserved in time has remained open until now. Attempts at
generalizing Hopfions to torus knots [14,15,28] succeeded
at constructing such solutions at an instant in time, but their
structure was not preserved [15], and unraveled with time.
Beyond Maxwell’s equations, the more general problem of
finding explicit solutions to dynamical flows which
embody persistent knots has also remained open.
The fluidlike topology-preserving evolution of the

Hopfion solution is closely tied to the property that the
electric and magnetic fields are everywhere perpendicular
and of equal magnitude [a constraint known as nullness,
cf. Eq. (3)]. Nullness introduces an effective nonlinearity in
the problem and imposes a dynamical geometric constraint
on Maxwell fields, restricting the space of possible topo-
logical configurations of field lines.
We construct knotted solutions within the space of null

field configurations by making use of formalisms devel-
oped for the construction of null Maxwell fields, such as
Bateman’s method [29] or equivalently a spinor formalism
(see Supplemental Material [30]). The combination of a
null electromagnetic field formalism with a topological
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construction, leading to a family of knotted null solutions
is the central result of this Letter. We now briefly review the
key features of the evolution of null electromagnetic fields.

Null electromagnetic fields.—Null electromagnetic
fields have a rich history, from the early construction by
Bateman [29] to Robinson’s theorem [31] and Penrose’s
twistor theory [32]. For a null electromagnetic field, the
Poynting field not only guides the flow of energy, but also
governs the evolution of the electric and magnetic field
lines. These field lines evolve as though embedded in a
fluid, flowing at the speed of light, in the direction of the
Poynting field [15,23]. The persistence of the null condi-
tions guarantees the continued fluidlike evolution of the
electric and magnetic field lines, giving them the appear-
ance of unbreakable elastic filaments.

The preservation of the null conditions requires the
continued perpendicularity of the electric and magnetic

fields as they evolve, thus requiring the flow transporting
the field lines to be free of shear. Robinson’s theorem [31]
guarantees the existence of a shear-free family of light rays
associated with every null electromagnetic field. In flat
space-time, this shear-free family of light rays is given
by the normalized Poynting field: the velocity field of the
flow transporting the field lines.
The Hopfion solution illustrated in Fig. 1 beautifully

demonstrates the features of a null electromagnetic field:
the electric and magnetic field lines evolve smoothly,
preserving the topology of the field line structure (a Hopf
fibration in both cases). The shear-free family of light rays
associated with the Hopfion solution, remarkably, also has
the structure of a Hopf fibration, which remains unchanged
as it evolves with time. This family of light rays is well
known in the literature as the Robinson congruence [32].
Since the null condition makes the design of a knotted

magnetic or electric field, a problem of engineering a
triplet of mutually orthogonal fields that remains orthogo-
nal under time evolution, we start with the formalisms
developed for the construction of null fields and seek to
construct knotted structures within them. We now briefly
summarize Bateman’s method for constructing null elec-
tromagnetic fields.
Bateman’s construction.—Bateman [29] constructs all

null electromagnetic fields associated with the same under-
lying normalized Poynting field, using two complex scalar
functions of space-time. Hogan [33], has shown that all
null electromagnetic fields can be constructed using
Bateman’s method.
According to Bateman’s construction, given a pair of

complex scalar functions of space-time (�,�)which satisfy

r�� r� ¼ ið@t�r�� @t�r�Þ; (1)

there is a corresponding electromagnetic field

F ¼ Eþ iB ¼ r��r�; (2)

where F is known as the Riemann-Silberstein vector [34].
This field is null (both invariants vanish),

E �B ¼ 0; E �E�B � B ¼ 0; (3)

since the scalar product F � F is zero, as can be seen by
taking the dot product of the left-hand side of Eq. (1) with its
right-hand side. For the null solutions generated by Eq. (2)
to be nontrivial, the following conditions must be satisfied:
@t�ðð@t�Þ2 � ðr�Þ2Þ ¼ @t�ðð@t�Þ2 � ðr�Þ2Þ ¼ 0
Each pair (�, �) satisfying Eq. (1) generates a whole

family of fields because any vector field of the form

F ¼ hð�;�Þr�� r� ¼ rfð�;�Þ � rgð�;�Þ; (4)

where h :¼ @�f@�g� @�f@�g and f, g are arbitrary hol-

omorphic functions of (�, �), is a null electromagnetic
field. Note that all fields constructed in this way have,
by construction, the same normalized Poynting field:
E� B=jE� Bj ¼ iðF� F�=F � F�Þ, where F� is the

FIG. 1 (color online). Hopfion solution: field line structure
(a)–(c) and time evolution (d)–(e). Field lines fill nested tori,
forming closed loops linked with every other loop. (a) Hopf link
formed by the circle at the core (orange) of the nested tori, and
one of the field lines (blue). (b) The torus (purple) that the field
line forming the Hopf link is tangent to. (c) Nested tori (purple)
enclosing the core, on which the field lines lie. (d) Time evolu-
tion of the Poynting field lines (gray), an energy isosurface (red),
and the energy density (shown via projections). (e) Time evolu-
tion of the electric (yellow), magnetic (blue), and Poynting field
lines (gray), with the top view shown in the inset.
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complex conjugate of F. This is made manifest, when these
null fields are expressed in the equivalent language of
spinors (see Supplemental Material [30]).

We list here two simple examples of this construction
[27]: a circularly polarized plane wave traveling in the
þz direction and the Hopfion solution. They arise
from the following choices of � and �. For the plane
wave: � ¼ z� t, � ¼ xþ iy, f ¼ ei�, g ¼ �, giving

Fpw ¼ ðx̂þ iŷÞeiðz�tÞ. For the Hopfion we have instead
� ¼ �d=b, � ¼ �ia=ð2bÞ, f ¼ 1=�2, g ¼ � giving
Fhp¼d�3ðb2�a2;�iða2þb2Þ;2abÞ, where a ¼ x� iy,
b ¼ t� i� z, d ¼ r2 � ðt� iÞ2.

We now present a family of light-beam-like propagating
solutions toMaxwell’s equations in free space, in which the
electric and magnetic fields encode torus knots and links
that are preserved in time. We construct these solutions
using complex scalar maps in the context of Bateman’s
framework. We then describe the knotted structure of the
field lines, and compute the entire set of conserved cur-
rents, the helicity and charges for electromagnetism in free
space, for this family of solutions.

Constructing knotted null electromagnetic fields.—
There is a natural connection between knots and singular
points of complex maps from S3 to C. This was used, for
example, in recent work by Dennis et al. [12] to construct
knotted optical vortices in light beams. In particular, given
a pair of complex numbers (u, v) such that juj2 þ jvj2 ¼ 1
(and hence they define coordinates on S3), it has been
shown [35,36] that up�vq¼0 is the equation of a (p, q)
torus knot, when (p, q) are coprime integers.

We note that the following choice of (�,�) in Bateman’s
construction:

� ¼ r2 � t2 � 1þ 2iz

r2 � ðt� iÞ2 ; � ¼ 2ðx� iyÞ
r2 � ðt� iÞ2 ; (5)

which satisfies Eq. (1), admits a natural interpretation as
coordinates on S3 since j�j2þj�j2¼1 for any t. At t ¼ 0,
ð�;�Þ ¼ ðu; vÞ, the standard stereographic coordinates
on S3.

Hence by [35,36], �p � �q ¼ 0 encodes a singular line
tied into a (p, q) torus knot when p, q are coprime integers.
Guided by this result, we make the intuitive choice of
fð�;�Þ ¼ �p and gð�;�Þ ¼ �q in (4), to obtain the fol-
lowing family of knotted null solutions:

F ¼ r�p �r�q; (6)

which can equivalently be expressed in terms of spinors
(see Supplemental Material [30]). On inspection, we find
that the electric and magnetic field lines (shown in Fig. 2)
are grouped into knotted and linked tori, nested one inside
the other, with (p, q)-torus knots at the core of the foliation.
Being smooth, finite energy solutions to Maxwell’s equa-
tions, these knotted electromagnetic fields are physically
feasible, and nullness guarantees that the topology of these

knotted structures is preserved in time (as shown in Fig. 3).
The shear-free family of light rays associated with this
family of solutions is the Robinson congruence.
As illustrated in Fig. 2, the magnetic field lines organize

around a set of core magnetic field lines, which form
(p, q)-torus knots, and stay confined on the surfaces of
nested tori, which are isosurfaces of�B ¼ Ref�p�qg. The
innermost core of these nested tori has zero thickness, and
corresponds to the knotted core magnetic field lines.
Starting from the core, the tori successively increase in
thickness (as shown in Fig. 2), until they collide (when
�B ¼ 0) and extend to infinity. Since the magnetic field is
divergence free and does not vanish on any isosurface
�B � 0, it follows [37] that all magnetic lines are either
periodic or quasiperiodic on each toroidal surface.
As the field evolves, the nested tori along with the

knotted core deform smoothly, rotating and stretching, as
illustrated in Fig. 3, and the supplementary videos [30].
The electric field lines are also confined on the surface of

nested tori (isosurfaces of �E ¼ Imf�p�qg), organizing
around a set of knotted core electric field lines, and have
exactly the same structure as the magnetic field lines,
rotated in space about the z axis by �=ð2qÞ. For more
detailed descriptions and explicit equations describing
the core field lines, see Supplemental Material [30].
To further characterize the physical properties of this

family of knotted null fields, we compute the helicity and
the full set of conserved quantities [14] corresponding to
the known (conformal) symmetries of electromagnetism
in free space. The nonvanishing currents and charges
normalized by the energy are the following: magnetic
helicity H m ¼ electric helicity H e ¼ 1=ðpþ qÞ, mo-
mentum P ¼ JSCT ¼ ð0; 0; ð�pÞ=ðpþ qÞÞ, angular mo-
mentum L ¼ ð0; 0; q=ðpþ qÞÞ, where JSCT is the current
associated with special conformal transformations; see
Supplemental Material [30] for explicit expressions.

FIG. 2 (color online). Structure of magnetic field lines, (a)–(c)
Trefoil knots (p ¼ 2, q ¼ 3), (d)–(f) Cinquefoil knots (p ¼ 2,
q ¼ 5), (g)–(i) 4 linked rings (p ¼ 2, q ¼ 2). (a),(d),(g) Core
(orange) field line(s) forming (a) a trefoil knot (d) a cinquefoil
knot (g) 4 linked rings. (b),(e),(h) Field line(s) (blue) wrapping
around the core (orange) confined to a knotted torus (purple)
enclosing the core. (c),(f),(i) Knotted nested tori (purple) enclos-
ing the core, on which the field lines lie.
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The special choice of ðp; qÞ ¼ ð1; 1Þ yields the Hopfion
solution described earlier, in which not only do the core
electric and magnetic field lines formHopf links, but all the
other field lines are also closed loops, linked with every
other field line.

Summary.—The solutions presented here extend the

space of exact, physically feasible, knotted Maxwell fields

beyond the Hopfion, by encoding an entire family of both

knots and links that are preserved under time evolution.

Many open questions remain on the space of knotted states,

such as whether solutions with each and every field line

knotted and preserved by time evolution exist with topol-

ogy different from the Hopf fibration (e.g., a Seifert folia-

tion of S3). Beyond electromagnetism, it remains an open

question whether similar explicit solutions can be found for

nonlinear evolutions such as the Euler flow of ideal fluids.

From a dynamical systems perspective, it may be interest-

ing to explore the role of the invariant tori in the solutions

we present and the conditions for which Bateman’s con-

struction give rise to electric and magnetic fields with a first

integral. Finally, if realized in experiment, can these struc-

tures be imprinted on matter such as plasmas or quantum

fluids?
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