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The interplay between dissipation and internal interactions in quantum many-body systems gives rise to

a wealth of novel phenomena. Here we investigate spin-1=2 chains with uniform local couplings to a

Markovian environment using the time-dependent density matrix renormalization group. For the open

XXZ model, we discover that the decoherence time diverges in the thermodynamic limit. The coherence

decay is then algebraic instead of exponential. This is due to a vanishing gap in the spectrum of the

corresponding Liouville superoperator and can be explained on the basis of a perturbative treatment.

In contrast, decoherence in the open transverse-field Ising model is found to be always exponential. In this

case, the internal interactions can both facilitate and impede the environment-induced decoherence.
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Introduction.—Every quantum system that we wish to
study or model is inevitably coupled to some form of
environment and hence an open quantum system [1–5].
The coupling to the environment can for example induce
decay of quantum coherence (decoherence) and dissipa-
tion. To take account of these effects is particularly inter-
esting and complex when the system itself is already an
interacting many-body system. Recently, first theoretical
[6–20] and experimental [21–23] investigations were pre-
sented for this scenario. Whereas decoherence is usually
seen as an obstacle for quantum simulation [24] and
information processing [25,26], it has also been suggested
that one could exploit the effect for the preparation of
desired many-body states by engineering the dissipative
processes [27–30].

ForMarkovian environments [31–33], the system state �
evolves according to the Lindblad master equation

@t�ðtÞ ¼ L̂�ðtÞ. The decoherence behavior is determined

by the spectral gap of the Liouville superoperator L̂. For
the textbook-type scenarios of finite-size systems or many-
body systems without interaction, the gap is necessarily
finite and, consequently, quantum coherence decays
exponentially with time [1–4]. This imposes strong limita-
tions for many quantum simulation and information pro-
cessing applications. In this Letter, we find however that
Markovianity does not necessarily imply exponential deco-
herence. For cases where the system itself is a many-body
system with internal interactions as displayed in Fig. 1, we
show that the Liouvillian gap can close in the thermody-
namic limit and lead to a divergent decoherence time due to
an interplay of dissipation and interaction. The coherence
decay then becomes algebraic, i.e., follows a power law,
instead of being exponential. This novel phenomenon is
reminiscent of the importance of the Hamiltonian gap
for closed many-body systems, which is intimately related
to quantum phase transitions [34], the scaling behavior
of entanglement, and the spatial decay of quantum
correlations [35,36].

Specifically, let us consider spin-1=2 lattice systems
with local couplings to a Markovian environment. The
Lindblad master equation [31–33] reads (@ ¼ 1)

@t� ¼ L̂� ¼ Ĥ�þ D̂�

¼ �i½H;�� þ �
X
i

�
Li�L

y
i � 1

2
fLy

i Li; �g
�
: (1)

The Liouville superoperator L̂ contains two parts: Ĥ� ¼
�i½H;�� generates the evolution due to the system
Hamiltonian H whereas the dissipative process is

described by D̂�. This equation of motion describes, for
example, systems in the weak-coupling regime (Born-
Markov-secular approximation), singular-coupling regime,
or the time average of a system with stochastic
Hamiltonian terms (Supplemental Material [37]).
Throughout the Letter we consider uniform Lindblad
operators Li ¼ Szi with a coupling strength �. This type
of coupling was first introduced in the study of dissipative
two-state systems [38] and, as discussed below, is widely
applicable for the description of environment-induced
decoherence. For the simplest case of a single spin with
H ¼ 0, the master equation (1) predicts the typical expo-
nential decay of off-diagonal density matrix elements
�";#ðtÞ � e��t=4, implying a rapid destruction of superposi-
tions of states (quantum coherence).
In this Letter, we demonstrate using the example

of spin-1=2 chains with internal interactions and the uni-
form couplings to the environment how the interplay

FIG. 1 (color online). A quantum spin chain uniformly
coupled to the environment via the z components of the spins.
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between interaction and dissipation can fundamentally
alter the decoherence behavior. In particular, (i) for the
Heisenberg XXZ model in the thermodynamic limit, the
coherence decay becomes algebraic instead of exponential,
and (ii) for the transverse-field Ising model, the coherence
decay remains exponential, but the internal interactions
can both facilitate and impede the decoherence in com-
parison to the noninteracting case. We provide quasiexact
numerical results using the time-dependent density matrix
renormalization group (tDMRG) method [39–42] and
explain both features on the basis of a perturbative treat-
ment for the Liouville superoperator.

Experimental realizations and applications.—Besides
being of fundamental theoretical interest, the two dissipative
models addressed in this Letter are of broad experimental
and technological relevance. We shortly mention a few
examples. A uniform coupling to the environment via
Lindblad operators Li ¼ Szi occurs for example naturally
in quantum computer architectures [43,44] based on super-
conducting flux qubits through fluctuations of the external
magnetic flux [45–47]. Inductive coupling of flux qubits
yields the Ising-type interaction SziS

z
j [48–50]. In ultracold

atom systems where both interaction and dissipation can be
controlled, the corresponding Lindblad operators Li ¼ ni
describe laser fluctuations and incoherent scattering of the
laser light [51–53]. With quantum dot spin qubits [54,55],
one can implement both the transverse Ising model [56] and
the Heisenberg model [54], where Li ¼ Szi describes the
effect of variations in the longitudinal nuclearmagnetic field.

Liouville spectrum.—Before addressing the two specific
spin models, some general remarks are appropriate. First,

as long as Ly
i ¼ Li 8i, the maximally mixed state �0 / 1

is always a steady state (@t� ¼ 0) of Eq. (1). For the
models addressed in this Letter, �0 or restrictions of it to
certain symmetry sectors are the unique steady states.
Although all the initial states will eventually converge to
such a steady state, the approach towards it is typically
highly nontrivial and depends on the quantum many-body
Hamiltonian. The dynamics is governed by the non-

Hermitian superoperator L̂. Its eigenvalues �� have non-
positive real parts Re�� � 0, and the steady state has the
eigenvalue �0 ¼ 0. We call

� :¼ min
�>0

Reð���Þ (2)

the spectral gap of the Liouville operator. If the gap is
finite, the distance of the time-evolved state to the steady
state will decrease exponentially with time, and � sets the
corresponding relaxation rate. However, as we will see
below, the many-body interactions in the system may

qualitatively alter the dynamics by closing the gap of L̂
in the thermodynamic limit, which gives rise to a novel
algebraic decoherence behavior.

Algebraic coherence decay in the open XXZ model.—
First, let us consider the spin-1=2 XXZ chain

HXXZ ¼
X
i

�
Jxy
2
ðSþi S�iþ1 þ S�i Sþiþ1Þ þ JzS

z
iS

z
iþ1

�
(3)

uniformly coupled to the environment via the z compo-
nents of the spins Li ¼ Szi . We study the time evolution of
the system density matrix �ðtÞ based on the master equa-
tion (1) with the initial state �ð0Þ ¼ j�0ih�0j being the
Néel state j�0i ¼ j"# � � � "#i. In the absence of dissipation
(� ¼ 0), the time evolution for this setup has, for example,
been studied in the context of quantum quenches [57–59],
where the long-time behavior decisively depends on
Jz=Jxy. In this model, the total magnetization

P
iS

z
i is

conserved. As a consequence, the off-diagonal element
�i
";# ¼ hSþi i of the single-site density matrices are strictly

zero for all times and can not be used to monitor the
decoherence. Instead, we can choose the off-diagonal
term C ¼ hSþi S�iþ1i of the two-site density matrix to quan-

tify the decoherence, where sites i and iþ 1 are located in
the center of the chain. For the simplest case of a two-site
system (N ¼ 2), it is easy to show that the off-diagonal
element C decays exponentially.
In order to study the effects of the many-body correla-

tions on the decoherence, we employ tDMRG [39–42]. As

shown in Ref. [60], the propagator expðL̂tÞ can be approxi-
mated by a circuit of two-site gates with an accuracy that is
well controlled in terms of the operationally relevant
1 ! 1 norm. Here, we specifically employ a fourth-order
Trotter-Suzuki decomposition with a time step of size
�t ¼ 0:125. Starting from certain product states �ð0Þ, the
time-evolved states are obtained by applying the local
Trotter gates and approximating �ðtÞ by matrix product
states [61,62]. The essence of the DMRG procedure is to
express �ðtÞ in every step of the simulation in a reduced
Hilbert-Schmidt orthonormal operator basis fOL
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FIG. 2 (color online). (a) Power-law decay of the off-diagonal
density matrix element C ¼ hSþi S�iþ1i in the dissipative XXZ
chain (3) of length N ¼ 96 for different Jxy, Jz, and fixed bath

coupling � ¼ 1, evaluated in the center of the chain. (b) Finite-

size scaling of the gap (2) of the Liouville superoperator L̂ for
the open XXZ model, obtained by exact diagonalization.
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a spatial splitting of the system into a left and a right part so
that �ðtÞ ¼ P

i�iO
L
i �OR

i . The approximation consists in
discarding all components iwith weights �2

i =
P

j�
2
j below a

certain threshold � (between 10�10 and 10�12 in this work).
One has to ensure convergence of the numerical results
with respect to the truncation threshold � and the system
size N to capture the physics of the thermodynamic limit.
See the Supplemental Material [37].

The evolution of the coherence CðtÞ in open XXZ chains
is shown in Fig. 2. In the long-time limit, we find the
coherence to decay algebraically, instead of exponentially,
according to the power law

CðtÞ / t�� with � � 1:58: (4)

The exponent � is in the studied parameter regime
independent of the system parameters Jxy, Jz, and �. In

general, an algebraic decay implies the absence of a char-
acteristic time scale in the long-time dynamics. It results

from the vanishing of the gap � of the Liouvillian L̂ in the
thermodynamic limit. That this is indeed the case can be
verified numerically by exact diagonalization as shown in
Fig. 2(b).

To get a better understanding of this phenomenon, let us
perform a second-order perturbative analysis to derive an

effective Liouvillian L̂eff for the limit � � jJzj, jJxyj of
strong dissipation. The Liouvillian can be split into an

unperturbed part L̂0� :¼ �i½Hz; �� þ D̂�, where Hz ¼
Jz
P

iS
z
i S

z
iþ1, and the perturbation L̂1� :¼ �i½Hxy; �� with

Hxy ¼ ðJxy=2ÞPiðSþi S�iþ1 þ S�i Sþiþ1Þ. The steady states of

L̂0 (eigenvalue �0 ¼ 0) are ��
0 ¼ j�ih�j, where j�i ¼

j�1; . . . ; �Ni are the fSzi g eigenstates spanning the Hilbert
space of the spin configurations with zero total magneti-
zation. The effect of a small coupling Jxy is to lift the

degeneracy in the steady-state manifold through a super-
exchange process that leads us to an effective Liouvillian

L̂eff , constrained to the subspace H spanned by the opera-
tors ��

0 . H is to be understood as a subspace of the vector

space BðH Þ of linear operators on the Hilbert space H ,

i.e., L̂: BðH Þ ! BðH Þ and L̂eff: H ! H. One obtains

L̂eff ¼ P̂ L̂1

1

�0 � L̂0

L̂1P̂ : (5)

P̂ is the projector onto the subspace H. The intermediate

states in the perturbation theory are of the form ���0
1 ¼

j�ih� 0j, where j� 0i ¼ ðSþi S�iþ1 þ S�i Sþiþ1Þj�i for some

bond (i, iþ 1). Their L̂0 eigenvalues, needed to evaluate
the denominator in Eq. (5), are �� or ��	 iJz, depend-
ing on �. However, the term 	iJz can be ignored as it

represents an irrelevant contribution of order 1=�2 to L̂eff .
The full calculation given in the Supplemental Material
[37] shows that the matrix elements of the effective
Liouvillian are identical with those of the ferromagnetic
Heisenberg model

K ¼ �J2xy
�

X
i

�
1

2
ðSþi S�iþ1 þ S�i S�iþ1Þ þ SziS

z
iþ1 �

1

4

�

in the sense that

L̂eff j�ih�j ¼ �X
�0
h� 0jKj�i � j� 0ih� 0j: (6)

As a consequence, at the level of the second-order pertur-

bation theory, the gap (2) of the effective Liouvillian L̂eff is
that of the Heisenberg ferromagnet K. Its gap vanishes as
1=N2 due to the quadratic spin-wave dispersion around
zero momentum and the 2	=N spacing of the quasimo-
menta. This explains the quadratic behavior of the gaps �
for the full model in Fig. 2(b).
Decoherence in the open transverse Ising model.—

A second paradigmatic example is the dissipative
transverse-field Ising chain

HTI ¼
X
i

ðJz�z
i�

z
iþ1 � hx�

x
i Þ ¼

X
i

ð4JzSziSziþ1 � 2hxS
x
i Þ

(7)

with the interaction strength Jz, the transverse magnetic
field hx, and the Pauli matrices ��

i . To study the interplay
of interaction and dissipation, we set for simplicity hx ¼ 1
and vary Jz and the bath coupling �. As Lindblad opera-
tors, we choose again Li ¼ Szi and study the time evolution
of the system density matrix based on Eq. (1) starting from
a fully polarized state, i.e., �ð0Þ ¼ j�0

0ih�0
0j with j�0

0i¼
j"" ��� ""i. Alternative initial states have also been checked.
However, as we are foremost interested in the long-time
behavior, the choice of the initial state is of minor impor-
tance. Let us first consider the noninteracting case with
Jz ¼ 0, which reduces to the decoherence problem of a
single spin subject to an external field. In this case, the off-
diagonal element �i

";# ¼ hSþi i of the single-site reduced

density matrix decays exponentially as �i
";#ðtÞ � e��0t,

where the decay rate is �0 ¼ �=4 (as long as � � 8jhxj;
see the Supplemental Material [37]). For the interacting
many-body system, one can use j�i

";#ðtÞj, with site i in the

middle of the chain, to monitor the coherence decay. In
contrast to the situation for the open XXZ model, we find
here that the coherence always decreases exponentially as
shown in the inset of Fig. 3(a),

j�i
";#ðtÞj ¼ jhSþi ðtÞij � e��t: (8)

The decoherence rate (inverse relaxation time) � is deter-
mined by the interplay of the internal interaction and the
dissipation.
For small Jz, the decoherence dynamics is well

described by oscillations of exponentially decaying
amplitude. For large Jz, �i

";#ðtÞ decays exponentially

without oscillations. Now, let us turn to the question of
whether the internal interaction facilitates or impedes the
decoherence, i.e., whether the decoherence rate � is below
or above that of the noninteracting case Jz ¼ 0 with
�0 ¼ �=4. As shown in Fig. 3(a), the answer to this ques-
tion depends in an intricate manner on the values of � and
Jz. In the presence of weak dissipation (small �), the
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dependence of � on Jz is nonmonotonic. The interaction
facilitates the environment-induced decoherence (�>�0)
for small Jz, whereas it impedes the decoherence (�<�0)
for large Jz. For sufficiently strong dissipation, the inter-
action always suppresses the decoherence.

A qualitative understanding of the fact that interaction
and dissipation cooperate to enhance the decoherence in
the case of small Jz and � can be gained by analyzing the
magnetization dynamics hSzi ðtÞi for different Jz and �
values, as shown in Figs. 3(b) and 3(c). For small Jz and
�, hSzi i is well described by an exponentially decaying
oscillation. Generally, for open many-body systems, the
long-range quantum correlations are usually destroyed
during the long-time dissipative dynamics. As a conse-
quence, the quantum entanglement between a single spin
and the rest of the system is weak. This allows us to explain
the above observations in a mean-field framework corre-
sponding to the decoupling of the interaction term
SziS

z
iþ1 � Szi hSzi. On a qualitative level, the decoherence

in the long-time limit can be understood as that of a single
spin in a constant transverse field and a longitudinal field
2hSzðtÞi due to its nearest neighbors. Figures 3(b) and 3(c)
show that, for small Jz and �, the longitudinal field hSzðtÞi
is quickly oscillating—hence, playing a role similar to that
of noise and thus accelerating the decoherence. Once the
oscillations of hSzðtÞi vanish (large Jz or �), the decoher-
ence is suppressed.

The second key observation, that strong interaction
impedes the decoherence, can again be explained on the
basis of a perturbative analysis, here in the limit of a weak
magnetic field, � � jhxj. The field terms / hx of the

Liouvillian are considered as a perturbation so that

L̂ ¼ L̂0 þ L̂1 with

L̂0� ¼ �i½Hz; �� þ D̂� and L̂1� ¼ �i½Hx; ��; (9)

where Hz ¼ 4Jz
P

iS
z
i S

z
iþ1 and Hx ¼ �2hx

P
iS

x
i . In the

second-order perturbation theory, the eigenoperators of

L̂0 are similar to those in the treatment of the open XXZ
model (now the dynamics is not constrained to sectors of
constant magnetization), but the intermediate states are

different. Their L̂0 eigenvalues are ��=2 and ��=2	
i4Jz. The effective Liouville superoperator (5) is again of
the form of Eq. (6), and the effective Hamiltonian reads

K ¼ X
i

�
�þ �0

4
� ð�� �0ÞSzi�1S

z
iþ1

��
1

2
� Sxi

�
(10)

in this case, where � ¼ 16h2x=� and �0 ¼ 4h2x�=½�2=4þ
ð4JzÞ2�. On the basis of Eq. (10), one can show that the gap
(2) of the effective Liouvillian has for small Jz a value
& ð�þ �0Þ=4. For sufficiently large Jz, the gap is given
by �0. The corresponding eigenstate of K is the
spin-wave-like state

P
jj"x � � � "x#xj #xjþ1"x � � � "xi, where

Sxi j"xi i ¼ ð1=2Þj"xi i. A detailed derivation is given in the
Supplemental Material [37]. So the gap decays as 1=J2z ;
i.e., strong interaction impedes decoherence as we have
found in the quasiexact numerical analysis.
Conclusion.—In summary, we have studied the long-

time dynamics of open quantum spin systems, discovering
that the quantum many-body effects can significantly
change the nature of the environment-induced decoherence
by either altering the exponential coherence decay to being
algebraic or, alternatively, by increasing or decreasing the
decay rate. Besides illustrative quasiexact tDMRG simu-
lations, we have explained those effects by a perturbative
analysis. The latter also indicates that these phenomena are
certainly not limited to spin chains. Generically, algebraic
coherence decay will occur for models where the eigen-
space of the dissipative terms is highly degenerate, and this
degeneracy is then broken through interactions within the
system. A further specific example is the Bose-Hubbard
model with Li ¼ ni. Another interesting direction for
future investigations is that of driven-dissipative quantum
many-body systems, where external forces drive the sys-
tem far from equilibrium and the interplay between driv-
ing, dissipation, and internal interaction may give rise to
further novel nonequilibrium phenomena.
We gratefully acknowledge discussions with U.
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