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This Letter proposes an answer to a challenge posed by Bell on the lack of clarity in regards to

the dividing line between the quantum and classical regimes in a measurement problem. To this end,

a generalized logarithmic nonlinear Schrödinger equation is proposed to describe the time evolution of a

quantum dissipative system under continuous measurement. Within the Bohmian mechanics framework,

a solution to this equation reveals a novel result: it displays a time constant that should represent the

dividing line between the quantum and classical trajectories. It is shown that continuous measurements

and damping not only disturb the particle but compel the system to converge in time to a Newtonian

regime. While the width of the wave packet may reach a stationary regime, its quantum trajectories

converge exponentially in time to classical trajectories. In particular, it is shown that damping tends to

suppress further quantum effects on a time scale shorter than the relaxation time of the system. If the

initial wave packet width is taken to be equal to 2:8� 10�15 m (the approximate size of an electron), the

Bohmian time constant is found to have an upper limit, i.e., �Bmax ¼ 10�26 s.

DOI: 10.1103/PhysRevLett.111.150401 PACS numbers: 03.65.Ta

As pointed out by Bell [1], the lack of clarity in regards
to where the transition between the classical and quantum
regimes is located is one aspect of the measurement
problem. This problem represents one of the most impor-
tant conceptual difficulties in quantum mechanics.
Consequently, this topic of research has gained consider-
able interest in the last decades [2–4]. The presence of a
classical apparatus considerably affects the behavior of the
observed quantum system through continuous measure-
ment [5–8], which typically fails to have outcomes of the
sort the theory was created to explain. These frequent
measurements are also at the origin of the so-called Zeno
effect.

Another conceptual difficulty is that in a system under
observation, there are many degrees of freedom such that
information can be lost in the couplings, whichmay account
for dissipation. One possible approach that has often been
used to answer this question is to introduce all degrees of
freedom for the bath and solve a number of coupled equa-
tions in various limits of some approximation. In fact, by
using the influence-functional method, it has been shown
[9] that dissipation tends to destroy quantum interference in
a time scale shorter than the relaxation time of the system.
This result has given justification for the use of logarithmic
nonlinear wave equations [10–15] to describe quantum
dissipation. These equations have been validated as an
appropriate, practical bath functional in time-dependent
density functional theory for open quantum systems [15].

This Letter addresses both conceptual difficulties men-
tioned above. In particular, an answer to a challenge posed

by Bell [1] on the dividing line between the quantum and
classical regimes in a measurement problem is given
here. To this end, a generalized logarithmic nonlinear
Schrödinger equation is proposed to describe the time
evolution of a quantum dissipative system under continu-
ous measurement. Thus, these two basic existing decoher-
ence mechanisms are put on equal footing. Nowadays,
there are several routes to deal with this classical-quantum
divide. The main three routes were originally opened up by
Bohm [16] with his Bohmian mechanics in 1952, many-
worlds interpretation by Everett in 1957 [17], and wave
function collapse models established on firm grounds by
Ghirardi, Rimini, and Weber in 1986 [18]. These last
authors proposed a unified dynamics (which has to be
stochastic) for microscopic and macroscopic systems,
including the mesoscopic scale. Our approach is much
more restricted by now and follows the first route. Our
concerns are about the time dividing line between classical
and quantum trajectories for quantum processes in the
presence of different decoherence mechanisms. The con-
cept of trajectory used in our context is much more stan-
dard. It is limited to a dissipative (zero temperature)
dynamics in the presence of continuous measurements.
Furthermore, for the dissipative case, the effective
Hamiltonian we are implicitly considering is one with
some energy dissipation operator [19]. It is worth noting
that we do not propose here a universal behavior. Physical
processes we have in mind are, for example, electronic
transport in materials, diffusion of adsorbates on surfaces
or particles in bulk, motion of particles in quantum viscid
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media, friction in qubits, spectral lines under high pressure
where the collisions among gas phase particles can be
replaced by a collisional friction, and so on. If, in all cases
and any circumstance, an electron would converge to the
classical regime in at most 10�26 s, and this time scale
would depend on the mass as 1=

ffiffiffiffi
m

p
(for negligible fric-

tion), one could never, contrary to a host evidence, observe
interference phenomena, with electrons, neutrons, C60, and
so on. Such interference patterns are not considered in our
framework of applications. In such experiments, the mea-
surement is carried out only at the Fraunhofer or far field
region through a screen. Along the way to the screen,
particles are not perturbed by any measurement at any
time.

Within the Bohmian mechanics framework, a solution to
this equation reveals a novel result: it displays a time
constant that establishes the dividing line between the
quantum and classical trajectories. As in RC circuits,
the time constant is the key measure of how quickly the
capacitor becomes charged or discharged; in electronic
pacemakers, the pulsing rate of the heart’s contractions is
controlled by a RC circuit in which the time constant
represents the most important dividing line between nor-
mal and abnormal heartbeats [20]. It is shown below that
continuous measurements and damping not only disturb
the particle but compel the system to converge in time to a
Newtonian regime without any assumption of collapse.
Whereas the width of the wave packet may reach a sta-
tionary regime, its quantum trajectories converge exponen-
tially in time to classical trajectories. In particular, it is
shown that damping tends to suppress further quantum
effects on a time scale shorter than the relaxation time of
the system. For example, experiments to measure the size
of the electron consist of colliding two beams of electrons
against each other and counting how many are scattered
and altered in their trajectories. By counting the collisions
and knowing how many particles we have thrown, we can
estimate the average size of each particle in the beam [21].
If the initial wave packet width is taken to be equal to
2:8� 10�15 m (the approximate size of an electron), the
Bohmian time constant is found to have an upper limit, i.e.,
�Bmax ¼ 10�26 s.

Bohmian mechanics has recently attracted increasing
attention from researchers [22–24]. Despite the uncertainty
principle, the predictions of nonrelativistic quantum me-
chanics permit particles to have precise positions at all
times. The simplest theory demonstrating that this is so is
indeed Bohmian mechanics. One of the fundamental
aspects of this mechanics is its ability to tackle more
clearly the quantum measurement problem. The wave
function plays a dual role in this framework; it determines
the probability of the actual location of the particle and
monitors its motion. As pointed out by Bell [1], in physics
the only observations we must consider are position obser-
vations—a definite outcome in an individual measurement

is determined by the relevant position variable associated
with the apparatus. It is a great merit of the Bohmian
picture to force us to consider this fact.
For simplicity, let us consider a one-dimensional prob-

lem. The time evolution of the wave function of a quantum
dissipative system c ðx; tÞ under continuous measurement
can be described in terms of a nonlinear Schrödinger
equation. This equation combines two types of logarithmic
nonlinearities: (1) For the description of a system under
continuous measurement, Nassar [4] has recently proposed
a Schrödinger-type equation with the nonlinear logarith-
mic term �i@� lnjc j2, along the lines of the pioneering
work of Mensky [2] and Bialynicki-Birula and Mycielski
[3], and where the coefficient � characterizes the resolution
of the continuous measurement. However, it is fundamen-
tally different from such an equation due to the imaginary
coefficient in front the logarithmic term. A remarkable
feature of this equation is the existence of exact solitonlike
solutions of Gaussian shape. Hefter [25] has given physical
grounds for the use of this logarithmic nonlinear equation
by applying it to nuclear physics and obtaining qualitative
and quantitative positive results. He argues that this type of
equation can be applied to extended objects such as nucle-
ons and alpha particles. Furthermore, the origin of the
nonlinearity can also be understood as an energy dissipa-
tion operator in an effective Hamiltonian due to the con-
tinuous measurement or by quantizing the corresponding
Hamilton-Jacobi equation for a linear damped system
using the so-called Schrödinger method of quantization
[19,24]. (2) For the description of quantum dissipative
systems, Kostin [10] constructed a Schrödinger-type equa-
tion with the nonlinear logarithmic term ði�@=2Þ lnðc =c �Þ
with � being the friction coefficient. This equation has the
very interesting property that, at the level of observables, it
satisfies the dissipative Langevin equation at T ¼ 0. This
equation has subsequently been derived by Skagerstam
[12] and Yasue [13] and has found extensive use in many
applications [14]. The Kostin nonlinear logarithmic term
has recently been suggested by Yuen-Zhou et al. [15] as an
appropriate, practical bath functional in time-dependent
density functional theory for open quantum systems with
unitary propagation. So, by combining both nonlinearities,
the generalized logarithmic nonlinear Schrödinger equa-
tion reads

i@
@c ðx;tÞ

@t
¼½Hðx;tÞþ i@ðWcðx;tÞþWfðx;tÞÞ�c ðx;tÞ; (1)

with

Wcðx; tÞ ¼ ��½lnjc ðx; tÞj2 � hlnjc ðx; tÞj2i� (2)

and

Wfðx; tÞ ¼ �

2

�
ln

c ðx; tÞ
c �ðx; tÞ �

�
ln

c ðx; tÞ
c �ðx; tÞ

��
: (3)

The terms in h i arise from the requirement that the inte-
gration of Eq. (1) with respect to the variable x must be
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equal to the expectation values of the kinetic and potential
energies through the Hamiltonian H [10]. The expectation
value of the energy hEðtÞi is defined as in its standard from

hEðtÞi �
Z þ1

�1
c �ðx; tÞEðtÞc ðx; tÞdx: (4)

For the system studied here, no external potential is
assumed (i.e., V ¼ 0).

Equation (1) has several interesting and unique proper-
ties. First, it guarantees the separability of noninteracting
subsystems. Other nonlinear modifications can introduce
interactions between two subsystems even when there
are no real forces acting between them. Second, the sta-
tionary states can always be normalized. For other non-
linearities, stationary solutions have their norms fully
determined, and after multiplication by a constant they
cease to satisfy the equation. And third, the logarithmic
nonlinear Schrödinger equation (1) possesses simple ana-
lytic solutions in a number of dimensions—especially
nonspreading wave-packet solutions. It is fundamentally
different from the equations proposed by Bialynicki-Birula
and Mycielski [3] due to (i) the imaginary coefficient in
front of the logarithmic terms and (ii) the last term
hlnjc ðx; tÞj2i. Equation (1) also generalizes the equation
proposed by Kostin in order to account for continuous
observation.

Equation (1) can now be solved via the Bohmian formal-
ism [16,22]. To this end, the wave function is first
expressed in polar form

c ðx; tÞ ¼ �ðx; tÞ expðiSðx; tÞ=@Þ: (5)

Now, after the substitution of Eq. (5) into Eq. (1), we
obtain

i@

�
@�

@t
þ i

@

@S

@t
�

�
¼ � @

2

2m

��
@2�

@x2
� �

@
2

�
@S

@x

�
2
�

þ i

@

�
2
@S

@x

@�

@x
þ @2S

@x2

�	
� i@�½ln�2

� hln�2i��þ �½S� hSi��: (6)

Equation (6) can be separated into real and imaginary
parts. By defining the quantum hydrodynamical density �,
velocity v, and quantum potential Vqu respectively as

�ðx; tÞ ¼ �2ðx; tÞ; (7)

v ¼ 1

m

@S

@x
; (8)

Vqu ¼ � @
2

2m�

@2�

@x2
; (9)

we reach

@v

@t
þ v

@v

@x
þ �v ¼ � 1

m

@Vqu

@x
(10)

and

@�

@t
þ @

@x
ð�vÞ þ �½ln�� hln�i�� ¼ 0: (11)

Equation (10) is a Euler-type equation describing trajec-
tories of a fluid particle, with momentum p ¼ mv, whereas
Eq. (11) describes the evolution of the quantum fluid
density �. This density is interpreted as the probability
density of a particle being actually present within a specific
region. Such a particle follows a definite space-time tra-
jectory that is determined by its wave function through an
equation of motion in accordance with the initial position,
formulated in a way that is consistent with the Schrödinger
time evolution. An essential and unique feature of the
quantum potential is that the force arising from it is unlike
a mechanical force of a wave pushing on a particle with a
pressure proportional to the wave intensity. By assuming
that the wave packet is initially centered at x ¼ 0 and

�ðx; 0Þ ¼ ½2��2ð0Þ��1=2 exp½�x2=2�2ð0Þ� and � vanishes
for jxj ! 1 at any time, we may rewrite

�ðx; tÞ ¼ jc ðx; tÞj2
¼ ½2��2ðtÞ��1=2 expð�½x� �xðtÞ�2=½2�2ðtÞ�Þ; (12)

where �ðtÞ is the total width of the Gaussian wave packet
and �xðtÞ a classical trajectory. Equation (12) can be readily
used to demonstrate thatZ þ1

�1
ð½x� �xðtÞ�2Þ�ðx; tÞdx ¼ �2ðtÞ: (13)

Substitution of Eq. (12) into Eq. (11) yields

@�

@t
¼

�
�

_�

�
þ ðx� �xÞ

�2
_�xþ 1

�3
ðx� �xÞ2 _�

�
�; (14)

and

@ð�vÞ
@x

¼
� _�

�
� �

�
�þ

�� _�

�
� �

�
ðx� �xÞ þ _�x

�

�
�
�ðx� �xÞ

�2

�
�; (15)

which implies that

vðx; tÞ ¼
� _�

�
� �

�
ðx� �xÞ þ _�x: (16)

Analogously, substitution of Eq. (16) into Eq. (10) yields�
€�ðtÞ þ ð�� 2�Þ _�ðtÞ þ ð�2 � ��Þ�ðtÞ � @

2

4m2�3ðtÞ
�

� ðx� �xÞ1 þ ð€�xþ � _�xÞðx� �xÞ0 ¼ 0; (17)

which implies that

€�ðtÞ þ ð�� 2�Þ _�ðtÞ þ ð�2 � ��Þ�ðtÞ ¼ @
2

4m2�3ðtÞ (18)

and
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€�xþ � _�x ¼ 0: (19)

Equations (18) and (19) show that continuous measure-
ment of a quantum dissipative wave packet gives specific
features to its evolution: the appearance of distinct classi-
cal and quantum elements, respectively. This measurement
consists of monitoring the position of the quantum dissi-
pative system, and the result is the measured classical
trajectory �xðtÞ for t within a quantum uncertainty �ðtÞ.

The associated Bohmian trajectories [23,24] of an evolv-
ing ith particle of the ensemble with an initial position xoi
can be calculated by first substituting

_x iðtÞ ¼ viðx; tÞ (20)

into Eq. (16) to obtain

xiðtÞ ¼ �xðtÞ þ xoi
�ðtÞ
�o

e��t; (21)

where �o ¼ �ð0Þ is the initial width. As said above, the
position of the center of mass of the wave packet (the
classical trajectory) is represented by �xðtÞ, whereas xoi is
the initial position of the ith individual particle in the
Gaussian ensemble corresponding to the wave function
given by Eq. (5). Now, Eq. (18) admits analytic
Gaussian-shaped solitonlike solutions (Gaussons) when

� ¼ �

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

4
þ @

2

4m2�4
o

s
: (22)

For � � 0 and no friction, a stationary regime can be
reached, and the width of the wave packet can be related
to the resolution of measurement, which means that if an
initially free wave packet is kept under a certain continuous
measurement, its width may not spread in time. Note that
the inverse of @=ð2m�2

oÞ is associated with the relative
spreading of a free Gaussian wave packet [26]; in other
words, the corresponding spreading velocity is given by
@=ð2m�oÞ. Thus, the effective or renormalized friction
given by � takes into account the two spreading mecha-
nisms present in this dynamics. Equation (22) displays a
very similar structure to that found for the renormalized
frequency of a damped harmonic oscillator. It is worth
stressing that when the friction mechanism is added, the
resolution of the apparatus is changed, showing the inter-
twining role played by both mechanisms. Finally, the
general procedure will thus be to add more and more
independent decoherence mechanisms in order to take
into account the global effect in the corresponding time
evolution of the system, showing again this entanglement
among the different mechanisms.

The transition from quantum to classical trajectories
can then be defined as the Bohmian time constant to be
�B � ��1, and Eq. (21) can be further simplified to

xiðtÞ ¼ �xðtÞ þ xoie
�t=�B : (23)

It follows from Eq. (23) that if xoi ¼ 0, then the particle
follows the Newtonian trajectory at any time. If, however,
xoi is positive, then the particles distributed in the right half
of the initial ensemble are accelerated whereas the particles
distributed in the left half of the initial ensemble are
decelerated. Nevertheless, there is only a temporary asym-
metry in the Bohmian velocities between any two symmet-
ric particles since the rate of the asymmetry diminishes
with time. After a short time, the distance in position space
shifted by the particles initially lying at positive and nega-
tive xoi values converges to a constant value. So, continu-
ous measurements not only disturb the particle but compel
it to eventually converge to a classical position. It is also
noticeable that damping tends to suppress further quantum
effects on a time scale shorter than the relaxation time of
the system. For a small friction coefficient ½� < @=ðm�2

oÞ�,
the Bohmian time constant can be expressed as

�B ’ 2m�2
o

@

�
1� �m�2

o

@

�
: (24)

Furthermore, from Eqs. (9) and (21), we have that the
quantum force is given by

Fqu ¼ �@Vqu

@x
¼ � @

@x

�
� @

2

8m�4
o

ðx� �xÞ2 þ @
2

4m�2
o

�

¼ @
2

4m�4
o

xoie
�t=�B : (25)

Thus, the convergence of the quantum particle trajectories
to classical trajectories is due to the influence of the
measuring apparatus and friction through the quantum
force [27]. This quantum force is directly proportional to
the initial position of the ith particle and decays exponen-
tially in time (it drops 63% of its initial value after a time
constant �B). Likewise, the quantum position xiðtÞ, the
initial position of the ith individual particle in the
Gaussian ensemble, approaches its classical value. So,
friction and continuous observation of a wave packet
may lead to a gradual freezing of the quantum features of
the particle.
Finally, if the initial wave packet width for an electron is

taken to be equal to 2:8� 10�15 m (the approximate size
of an electron [21]) and the coefficient of friction is made
very small ½� � @=ðm�2

oÞ�, the Bohmian time constant is
found to have an upper limit

�Bmax ¼ 10�26 s: (26)

This result provides an answer to a challenge posed by Bell
[1,28] on the lack of clarity about the line between the
quantum and classical regimes in a measurement problem:
the Bohmian time constant defined above may establish
that dividing line [20].
By adoption of the Bohmian framework, which is one

of the three main routes mentioned at the beginning,
the interpretational scheme is different but pointing in
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the same direction as other works on decoherence.
Furthermore, we also surmise that there is no single uni-
versal time scale but several ones, depending on the ex-
perimental situation. On the other hand, the modeling of
effective collapse induced by nonlinearity at the quantum
level is scarcely in this route. In any case, further inves-
tigation is needed to better understand the dynamics of a
system interacting with an environment, which is traced
out, by considering stochasticity through additional noise
terms.

Part of this work was done at the UCLA Physics and
Astronomy Department. Correspondence with I.
Bialynicki-Birula is gratefully acknowledged. S.M.-A.
gratefully acknowledges the MICINN (Spain) through
Grant No. FIS2011-29596-C02-01 and the COST Action
MP1006 ‘‘Fundamental Problems in Quantum Physics.’’
Finally, wewould like to thank two anonymous referees for
their pertinent remarks and suggestions.

*nassar@ucla.edu
[1] J. S. Bell, Speakable and Unspeakable in Quantum

Mechanics (Cambridge University Press, Cambridge,
England, 1987), pp. 29–30.

[2] M.B. Mensky, Phys. Lett. A 231, 1 (1997); Phys. Lett. A
307, 85 (2003); Int. J. Theor. Phys. 37, 273 (1998);
Continuous Quantum Measurement and Path Integrals
(IOP Publishing, Bristol, 1993).

[3] I. Bialynicki-Birula and J. Mycielski, Ann. Phys. (N.Y.)
100, 62 (1976).

[4] A. B. Nassar, Ann. Phys. (Amsterdam) 331, 317 (2013).
[5] B. Misra and E. C. G. Sudarshan, J. Math. Phys. (N.Y.) 18,

756 (1977); C. B. Chin, E. C.G. Sudarshan, and B. Misra,
Phys. Rev. D 16, 520 (1977).

[6] A. Peres, Am. J. Phys. 48, 931 (1980); A. Peres and A.
Ron, Phys. Rev. A 42, 5720 (1990).

[7] W.M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J.
Wineland, Phys. Rev. A 41, 2295 (1990).

[8] D. Home andM.A.B. Whitaker, J. Phys. A 25, 657 (1992).

[9] A. O. Caldeira and A. J. Leggett, Phys. Rev. A 31, 1059
(1985).

[10] M.D. Kostin, J. Chem. Phys. 57, 3589 (1972).
[11] J. H. Weiner and R. E. Forman, Phys. Rev. B 10, 315

(1974).
[12] B. K. Skagerstam, Phys. Lett. B 58, 21 (1975).
[13] K. Yasue, Ann. Phys. (N.Y.) 114, 479 (1978).
[14] J. J. Griffin and K.K. Kan, Rev. Mod. Phys. 48, 467

(1976).
[15] J. Yuen-Zhou, D. G. Tempel, C. A. Rodriguez-Rosario,

and A. Aspuru-Guzik, Phys. Rev. Lett. 104, 043001
(2010).

[16] D. Bohm, Phys. Rev. 85, 166 (1952); 85, 180 (1952).
[17] H. Everett III, Rev. Mod. Phys. 29, 454 (1957).
[18] G. C. Ghirardi, A. Rimini, and T. Weber, Phys. Rev. D 34,

470 (1986).
[19] M. Razavy, Classical and Quantum Dissipative Systems

(Imperial College Press, London, 2005).
[20] One of the most interesting uses of an RC circuit is the

electronic pacemaker, which can make a stopped heart
start beating again. The electrodes are implanted in the
heart, and the circuit contains a capacitor and a resistor.
The pulsing rate depends on the time constant � ¼ RC;
which regulates the frequency of the heartbeat.

[21] D. J. Griffiths, Introduction to Quantum Mechanics
(Prentice-Hall, Englewood Cliffs, NJ, 1995), p. 155.

[22] P. Holland, The Quantum Theory of Motion (Cambridge
University Press, Cambridge, England, 1993).

[23] R. E. Wyatt, Quantum Dynamics with Trajectories
(Springer, New York, 2005).

[24] A. S. Sanz and S. Miret-Artés, A Trajectory Description of
Quantum Processes. I. Fundamentals, Lect. Notes Phys.
Vol. 850 (Springer, New York, 2012); A Trajectory
Description of Quantum Processes. II. Applications,
Lect. Notes Phys. Vol. 831 (Springer, New York, 2013).

[25] E. F. Hefter, Phys. Rev. A 32, 1201 (1985).
[26] A. S. Sanz and S. Miret-Artés, J. Phys. A 41, 435303

(2008).
[27] From Eq. (12), we note that the expectation value of

the quantum force vanishes at all times: hFqui ¼
�1=mh@Vqu=@xi ¼ ½@2=ð2m�2Þ�hx� �xðtÞi ¼ 0.

[28] J. Bernstein, Am. J. Phys. 79, 601 (2011).

PRL 111, 150401 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

11 OCTOBER 2013

150401-5

http://dx.doi.org/10.1016/S0375-9601(97)00231-4
http://dx.doi.org/10.1016/S0375-9601(02)01674-2
http://dx.doi.org/10.1016/S0375-9601(02)01674-2
http://dx.doi.org/10.1023/A:1026666701671
http://dx.doi.org/10.1016/0003-4916(76)90057-9
http://dx.doi.org/10.1016/0003-4916(76)90057-9
http://dx.doi.org/10.1016/j.aop.2013.01.009
http://dx.doi.org/10.1063/1.523304
http://dx.doi.org/10.1063/1.523304
http://dx.doi.org/10.1103/PhysRevD.16.520
http://dx.doi.org/10.1119/1.12204
http://dx.doi.org/10.1103/PhysRevA.42.5720
http://dx.doi.org/10.1103/PhysRevA.41.2295
http://dx.doi.org/10.1088/0305-4470/25/3/022
http://dx.doi.org/10.1103/PhysRevA.31.1059
http://dx.doi.org/10.1103/PhysRevA.31.1059
http://dx.doi.org/10.1063/1.1678812
http://dx.doi.org/10.1103/PhysRevB.10.315
http://dx.doi.org/10.1103/PhysRevB.10.315
http://dx.doi.org/10.1016/0370-2693(75)90717-0
http://dx.doi.org/10.1016/0003-4916(78)90279-8
http://dx.doi.org/10.1103/RevModPhys.48.467
http://dx.doi.org/10.1103/RevModPhys.48.467
http://dx.doi.org/10.1103/PhysRevLett.104.043001
http://dx.doi.org/10.1103/PhysRevLett.104.043001
http://dx.doi.org/10.1103/PhysRev.85.166
http://dx.doi.org/10.1103/PhysRev.85.180
http://dx.doi.org/10.1103/RevModPhys.29.454
http://dx.doi.org/10.1103/PhysRevD.34.470
http://dx.doi.org/10.1103/PhysRevD.34.470
http://dx.doi.org/10.1103/PhysRevA.32.1201
http://dx.doi.org/10.1088/1751-8113/41/43/435303
http://dx.doi.org/10.1088/1751-8113/41/43/435303
http://dx.doi.org/10.1119/1.3556713

