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We study the persistence of a geometrically frustrated local order inside partially crystallized packings
of equal-sized spheres. Measurements by x-ray tomography reveal previously unseen grain scale
rearrangements occurring inside large three-dimensional packings as they crystallize. Three successive
structural transitions are detected by a statistical description of the local volume fluctuations. These
compaction regimes are related to the disappearance of densely packed tetrahedral patterns of beads.
Amorphous packings of monodisperse spheres are saturated with these tetrahedral clusters at Bernal’s
limiting density (¢ = 64%). But, no periodic lattice can be built upon these patterns; they are
geometrically frustrated and are thus condemned to vanish while the crystallization occurs.
Remarkably, crystallization-induced grain rearrangements can be interpreted in terms of the evolution

of key topological features of these aggregates.
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The structural organization of dense materials such as
granular matter, glass, colloids, and some metals is natu-
rally built upon local patterns that cannot tile the space, a
phenomenon known as geometrical frustration [1-3].
Applying external forces can cause these complex struc-
tures to rearrange into periodic crystals, leading to dra-
matic alterations of their physical properties [4]. How these
substantial morphological changes occur during crystalli-
zation is often difficult to describe [5]. Dense packings of
identical spheres are commonly used to model complex
frustrated structures as well as global ordering transitions
[6]. However, our understanding of the crystallization of
densely packed athermal spheres remains largely incom-
plete. The nature of the structural inhibition which prevents
disordered packings of equal-sized spheres from being
denser than 64%, the random close packing (rcp) limit, is
highly debated [7-12]. Moreover, frictional packings need
to be strongly vibrated or sheared to pass the density of
64%, and crystalline clusters inevitably appear [13-15].
An entropic mechanism driving this ordering despite the
highly dissipative context has yet to be found [16-18].

As a packing crystallizes, it undergoes major grain-scale
rearrangements. A clear geometrical description of these
rearrangements could represent a first step towards the
elaboration of a statistical framework for granular crystal-
lization [13,19]. This challenging approach relies on find-
ing key patterns characterizing amorphous states and on
describing their evolution while the packing crystallizes.

In the 1960s, J. D. Bernal’s pioneering effort to model
the structure of simple liquids as “heaps of spheres” led
him to two breakthroughs. He first noticed the predomi-
nance of local tetrahedral configurations in disordered
sphere packings. Then, he described the propensity of these
tetrahedra to pack via their faces to form dense polytetra-
hedral aggregates [6]. Such polytetrahedral arrangements
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can produce a rich range of motifs [20], but none can
periodically tile the space; i.e., they are geometrically
frustrated patterns [6,21]. The densest local arrangement,
the icosahedron, is often used to explain the existence of
disordered structures [1]. Yet, recent computer models on
frictionless packings [13] emphasize that polytetrahedral
aggregates are naturally composed of linear branches con-
necting ring structures which contain five tetrahedra (five-
rings). Moreover, it has been suggested that the rcp state is
saturated with dense polytetrahedral clusters, such that any
further densification involves the presence of crystalline
configurations. This tantalizing proposition gives a clear
geometrical principle on which both the rcp limit and the
crystallization could eventually be statistically understood
for monodisperse sphere packings [13]. There is as yet no
experimental study giving a quantitative picture of the
topology of the polytetrahedral structures or describing
the fate of these aggregates beyond the rcp bound.

Here, we use a combination of novel experiments, x-ray
computed tomography, and statistical and topological
analysis to investigate the structure of frictional packings
before the rcp limit and far beyond in the crystalline region.
At ¢ = 64%, crystalline clusters inevitably appear in these
highly monodisperse packings, and this emerging order
enforces a sharp transition in the packing polytetrahedral
structure. Our analysis of the polytetrahedral clusters
shows that branches of tetrahedra and five-ring structures
are key topological features whose evolution is directly
related to successive crystallization regimes revealed by
the local volume fluctuations.

Our experimental setup extends vibrating techniques
used to study the compaction of amorphous packings
[14,22]. To observe a massive crystallization under vibra-
tions, the experiments are performed with monosized
acrylic beads (diameter = 1 mm, polydispersity = 2.5%)
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(a) Tomographic slice of a partially crystallized packing (¢ = 70.5%) in a spherical container. (b) PDF of the

local volume fluctuations for increasing global volume fraction ¢. The PDF for ¢¢ = 0.598 is fitted by a gamma distribution (red line).
Inset: The Voronoi partition of a local configuration of beads. The bead and the surrounding space closest to its center define the

Voronoi elementary brick. (c) The granular “specific heat” k,

, = (V= V.i)?/o? versus ¢. Three successive transitions are

highlighted at ® = 0.64, 0.68, 0.72. 34 subsets [26] of roughly 4000 beads extracted from six different packings (indicated by
different markers) have been analyzed: two initial jammed packings obtained by pouring + four partially crystallized packings. Inset:

Variance ¢ of the Voronoi volume versus ¢.

which are packed into large cylindrical or spherical con-
tainers (inner diameter = 66 mm). A batch of approxi-
mately 200000 beads is poured into the container
forming an initial packing in a random configuration with
a volume fraction ¢ ranging from 57% to 63%. The pack-
ings are then shaken intensely for few seconds, to the point
of fluidization [14], where a fast compaction is observed.
The resulting global packing density ranges from 68.5% up
to 71.5%. The internal structure of these packings is
imaged by means of x-ray computed tomography (see
Refs. [23,24] and the Supplemental Material [25]).
Figure 1(a) shows a tomographic slice of a dense packing
obtained in a spherical geometry. The heterogeneous struc-
ture of the packing is evident with disordered domains
(¢ = 0.65) coexisting with large and almost perfectly crys-
talline clusters (¢ = 0.732). We have consistently obtained
such partially crystallized packings, whose statistical and
topological features primarily depend on ¢ regardless of
the initial jammed configuration or the container geometry.
Our analyses have been carried out on global packings as
well as subsets containing 4000 spheres [26].

To explore how local configurations become denser
during the crystallization, we divide the packing according
to the Voronoi tessellation [inset of Fig. 1(b)]. This grain-
centered partitioning allows us to estimate the probability
distribution function (PDF) of the local volume fluctua-
tions and their statistics: i.e., its variance o2, mean value V,
and minimal bound V.

Figure 1(b) shows such a PDF for decreasing global
volume fraction. The PDF for disordered packings
(¢ <0.64) is asymmetric and corresponds to a gamma
law whose variance decreases with compaction [inset of
Fig. 1(c) and Ref. [27]]. In the density range ¢ €
[0.64, 0.68], although the global volume fraction decreases

(V decreases), the PDF flattens and its variance increases.
Beyond ¢ = 0.68, it gets narrower and peaks around
V =0, 71 mm?, which corresponds to cubo-octahedral
crystalline configurations.

An intensive granular variable kg = (V — V,)?/0?
has recently been suggested as granular material’s equiva-
lent of ‘“‘specific heat” [27]. kg should therefore be a
measure of structural rearrangements probed over the local
volume fluctuations. This parameter reveals three succes-
sive transitions occurring in our packings at ® = 0.64,
0.68, and 0.72, as shown in Fig. 1(c). The sharp drop
observed at @ = (.64 is related to the onset of crystalliza-
tion, which was detected by a bond order parameter
method (see Ref. [28] and the Supplemental Material
[25]). The two subsequent regimes of compaction at higher
densities (¢ > 0.68) are in contrast with the monotonic
drop of kg reported in numerical simulations [27]. These
transitions might be connected to global transformations of
the growing crystalline clusters [28,29].

To reveal grain rearrangements associated with these
structural transitions, we now describe packings in terms
of the simplices (generalized tetrahedra) of the Delaunay
partition [inset of Fig. 2(a)] [30]. Since Bernal’s work, it is
known that clusters made of quasiregular tetrahedra play a
major role in the structure and compaction of disordered
packings [6,13,19].

These tetrahedral patterns are revealed within the
Delaunay partition through two working hypotheses.
(i) A simplex is considered dense (or quasiregular) if its
longest edge [ is smaller than 5/4 of the diameter d of the
beads that compose the simplex. Dense simplices for
which (6 =1 —d = 0.25 X d) will be called tetrahedra
[6,13]. (ii) In an assembly of tetrahedra, those who share
a face show a greater mechanical stability than tetrahedra
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FIG. 2 (color online).
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Evolution of the densest simplices (quasiregular tetrahedra) of the Delaunay tessellation versus the volume

fraction. (a) Fraction of tetrahedra (6 < 0.25 X d) versus ¢. Inset: The Delaunay representation of a local configuration of beads. It is
based on local simplices (generalized tetrahedra) built on the centers of the locally four closest beads. (b) Fraction of tetrahedra that are
face adjacent and are involved in aggregates (polytetrahedral clusters) containing more than 3 components. (c) Fraction of beads which
are part of at least one dense tetrahedron (blue line) or that are part of a polytetrahedral cluster (red line).

connected by an edge or a vertex. Stable polytetrahedral
aggregates are defined as clusters made of three or more
face-adjacent tetrahedra. These clusters are frustrated
structures which cannot be part of any periodic crystalline
lattice [1,19]. Conversely, isolated pairs of face-adjacent
tetrahedra are found in the hcp crystal.

Figure 2 shows some characteristics of polytetrahedral
clusters for ¢ =~ 0.59 up to ¢ = 0.73. The number
of tetrahedra [Fig. 2(a)] and polytetrahedral clusters
[Fig. 2(b)] increases sharply as random packings get
denser. The fraction of polytetrahedral clusters has a pro-
nounced maximum around ¢ = 0.64 [Fig. 2(b)]. At this
peak, almost all the tetrahedra are involved in a frustrated
cluster. Beyond ¢ = 0.64, polytetrahedral clusters fade
away progressively. At ¢ = (.64, all the beads are involved
in a dense tetrahedron and are thus in “‘contact” with a
polytetrahedral structure [Fig. 2(c)]. These polytetrahedral
contacts are gradually replaced by crystalline contacts
beyond the rcp limit. However, the Delaunay mapping
associates many tetrahedra to each bead; thus, even at
¢ =~ 0.68, a small fraction of polytetrahedral aggregates
(7%) still involves a large number of beads (40%).
Moderate modifications of the condition (6 < 0.25 X d)
leave the global picture qualitatively unchanged [19].

Our experiments confirm two features observed in nu-
merical modeling of frictionless packings [13]: an increas-
ing fraction of polytetrahedral clusters provides a
densification mechanism for disordered packings, and
this densification process is limited by the rcp density
where the fraction of beads free to be part of a cluster is
exhausted. Remarkably, this scenario, based on pure
geometrical features, seems to be common to both friction-
less and dissipative structures. Beyond Bernal’s limit
(¢ = 0.64), monodisperse sphere packings inevitably start
crystallizing. The existence of a sharp maximum in
Fig. 2(b) is a signature of this abrupt crystallization onset
which insures the uniqueness of the rcp limit (as opposed to

a J line [9,12]). However, a significant number of polyte-
trahedral clusters survives beyond ¢ = 0.64 [Figs. 2(b)
and 2(c)].

A polytetrahedral cluster can be viewed as a network
in which each vertex is a dense tetrahedron and each
bond is made by two tetrahedra sharing a face. Figure 3
shows some features of this network for ¢ = 0.64.
Bonds are formed in a complex manner that sometimes
creates closed loops. These loops are named rings; many
rings consist of five tetrahedra (named five-rings)
[Figs. 3(a)-3(c)]. We use a network analyzer to describe
the topology of these structures (see the Supplemental
Material [25]).

The population of face-adjacent tetrahedra is sorted
according to three key topological features: tetrahedra
forming a ring structure, tetrahedra from polytetrahedral
clusters that are not involved in a ring and are called
branched tetrahedra, and pairs of tetrahedra (bipyramids).
Rings and branched tetrahedra compose the frustrated
polytetrahedral family which is condemned to disappear
during crystallization [1]. Figure 4(a) shows the evolution
versus ¢ of these topological descriptors.

Beyond ¢ = 64%, the increasing fraction of bipyramids
discloses the growth of hcp crystalline structures. The
presence of bipyramids below the rcp density may play a
role in the slow compaction dynamics of amorphous pack-
ings, as reported for colloidal glass [31].

Below the rcp limit, = 2/3 of the polytetrahedral clus-
ters are made of branched tetrahedra. This fraction de-
creases continuously with density increase. However, these
motifs are resilient features which survive for ¢ = 68%
when rings have almost disappeared. In this regime, a large
amount of beads (= 40%) is still connected via these linear
patterns [Fig. 2(c)]. These branched tetrahedra eventually
vanish for ¢ = 72%-73% [Figs. 2(b) and 4(a)].

Conversely, the evolution of the ring fraction is
not monotonic but peaks around the rcp density. Below
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FIG. 3 (color online). Visualizations of the topology of poly-
tetrahedral aggregates. Polytetrahedral clusters are represented as
networks in which each vertex (blue sphere) is a dense tetrahe-
dron and each bond (white tube) represents two tetrahedra sharing
a face. The inset of (a) shows the centers of beads forming a pair
of face-adjacent dense tetrahedra and their topological represen-
tation. (a) Polytetrahedral clusters in a packing at ¢ = 0.64. A
loop composed of five face-adjacent tetrahedra (five-ring) is
highlighted in red. (b) Close-up on an ““incomplete” icosahedral
configuration. A cluster of 12 five-rings would form an icosahe-
dron; here, this structure contains two five-rings adjacent to an
eight-ring. (c) Close-up on a “chain’ of rings composed of five-
rings (red lines) and a six-ring (green lines).

¢ = 64%, a disordered packing becomes denser by form-
ing an increasing fraction of rings which are mainly five-
rings [Figs. 4(a) and 4(b)]. While this compaction mecha-
nism peaks around ¢ = 64%, five-ring patterns still
account for almost 80% of the tetrahedra involved in a
ring structure up to ¢ =~ 68% [Fig. 4(b)]. Although a
persistent fivefold local symmetry is often reported to
coexist with crystalline clusters, its role in crystal growth
and morphology remains debated [29,32-34].

Beyond ¢ =~ 64%, five-rings disappear at 7 times the
rate of branched tetrahedra. Their fraction falls below 2%
at ¢ =~ 0.68 [Fig. 4(b)] while branched tetrahedra still
represent approximately half of the face-adjacent tetrahe-
dra [Fig. 4(a)]. This salient decrease coincides with an
increase in the local volume fluctuations [inset of
Fig. 1(c)], a remarkable fact since the global volume
fraction decreases. It signals that substantial grain rear-
rangements occur until five-rings almost vanished for
¢ = 68% [Fig. 4(b)]. Five-rings are thus prime patterns
to describe some crystallization rearrangements. Here, we
show that (i) the rcp density is a fully frustrated limit
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FIG. 4 (color online). (a) Evolution of the polytetrahedral
topological classes versus the volume fraction. Tetrahedra in-
volved in rings (red line, Njy,s) and branched tetrahedra (orange
line, Nyranchea) form the polytetrahedral family Nyoyyierra =
Niings T Noranchea; the fraction of tetrahedra in bipyramids
(Npipyr) is the difference between the orange and the blue lines.
The fractions are normalized by the number of face-adjacent
tetrahedra Neacerera = Npolytetra T Noipyr- (b) Size distribution (in
tetrahedra) of the ring patterns normalized by Npceretra-
(c) Outgoing average connectivity of the five-rings (see the
Supplemental Material [25]); this connectivity is five for a
five-ring part of an isolated icosahedron.

showing a maximum of dense five-ring configurations,
and (ii) the transition observed at ¢ =~ 68% [Fig. 1(c)]
corresponds to five-ring disappearance.

Beyond ¢ = 0.68, the vanishing of branched patterns
seems to induce fewer grain disturbances, since local vol-
ume fluctuations decrease again [inset of Fig. 1(c)]. In the
range ¢ € [0.68,0.72], the decreasing variance of these
fluctuations follows o = (V — V,,;,)?, resulting in a pla-
teau behavior for kg [Fig. 1(c)].

A polygonal cluster made of 12 five-rings forms an
icosahedral configuration. The presence of a local icosa-
hedral order is often invoked to explain the existence of
disordered packings [1]. Figure 4(c) shows that five-ring
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averaged outgoing connectivity Zge-rings 1S always smaller
than 5 for any volume fractions, but Z;e-sing, 18 five for an
isolated icosahedron. Besides, five-rings rarely aggregate
into dense clusters. The densest configurations are related
to a small fraction of eight-rings observed at ¢ =~ 64%
[Fig. 4(b)]. Those eight-rings are parts of incomplete
icosahedral configuration [Fig. 3(b)]. Thus, five-rings do
not aggregate to form icosahedral clusters. They are most
likely connected to each other via branches of tetrahedra
[Fig. 3(a)]. Despite the significant amount of distortion
allowed (6 = 0.25 X d), the absence of icosahedral
arrangements suggests that not all polytetrahedral struc-
tures are equally frustrated [21].

Since our packings are shaped by a strong fluidization
process, these findings might be relevant for complex
granular or suspension rheology issues [35,36]. Recent
advances point out the importance of the network of endur-
ing contacts for determining nonlocal constitutive laws of
dense granular flows [36]. In monodisperse granular ma-
terials, polytetrahedral clusters might partially map onto
this contact network and could enlighten the spatial orga-
nization of the mechanical backbone [37]. Interestingly,
a transition in the mechanical coordination number of
packings has recently been reported to occur for ¢ €
[0.64,0.68] [12].

In conclusion, the disappearance of polytetrahedral clus-
ters is an intrinsic geometrical feature of the crystallization
of monodisperse frictional sphere packings. The evolution
of key polytetrahedral patterns during the crystallization
improves our understanding of the different structural tran-
sitions observed in the local volume fluctuations. The
propensity of tetrahedra to coalesce via their faces might
be interpreted as the existence of a directional entropic
force [5]. It gives hope for the elaboration of a statistical
framework for granular crystallization and related transi-
tions observed in complex materials.
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