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We propose to use Ramsey interferometry and single-site addressability, available in synthetic matter

such as cold atoms or trapped ions, to measure real-space and time-resolved spin correlation functions.

These correlation functions directly probe the excitations of the system, which makes it possible to

characterize the underlying many-body states. Moreover, they contain valuable information about phase

transitions where they exhibit scale invariance. We also discuss experimental imperfections and show that

a spin-echo protocol can be used to cancel slow fluctuations in the magnetic field. We explicitly consider

examples of the two-dimensional, antiferromagnetic Heisenberg model and the one-dimensional, long-

range transverse field Ising model to illustrate the technique.

DOI: 10.1103/PhysRevLett.111.147205 PACS numbers: 75.10.Jm, 37.10.Ty, 47.70.Nd, 67.85.�d

In condensed matter systems, there exists a common
framework for understanding such diverse probes as neu-
tron and x-ray scattering, electron energy loss spectros-
copy, optical conductivity, scanning tunneling microscopy,
and angle-resolved photoemission. All of these techniques
can be understood in terms of dynamical response func-
tions, which are Fourier transformations of retarded
Green’s functions [1]
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Here, the summation goes over all many-body eigenstates
jni, � ¼ 1=kBT, the partition function Z ¼ P

ne
��En , op-

erators are given in the Heisenberg representation AðtÞ ¼
eiĤtAe�iĤt (@ is set to one in this Letter), signs � ðþÞ
correspond to commutator (anticommutator) Green’s func-
tions, and �ðtÞ is the Heaviside function. Correlation func-
tions provide a direct probe of many-body excitations and
their weight, describe many-body states, and give particu-
larly important information about quantum phase transi-
tions, where they exhibit characteristic scaling forms [2].

In the past few years, the experimental realization of
many-body systems with ultracold atoms [3], polar mole-
cules [4], and ion chains [5] has opened new directions
for exploring quantum dynamics. However, most dynami-
cal studies of such ‘‘synthetic matter’’ correspond to
quench or ramp experiments: The initial state is prepared,

then it undergoes some nontrivial evolution j�ðtÞi ¼
Tte

�i
R

t

0
dt0Ĥðt0Þj�ð0Þi, and some observable A is measured

hAðtÞi ¼ h�ðtÞjAj�ðtÞi. These experiments provide an
exciting new direction for exploring many-body dynamics,
but they do not give direct information about excitations of

many-body systems as contained in dynamical response
functions. Notable exceptions are phase or amplitude shak-
ing of the optical lattice (see, e.g., [6–8], and references
therein) and radio frequency spectroscopy [9], which can
be understood as measuring the single-particle spectral
function (i.e., the imaginary part of the corresponding
response function). However, these techniques cannot be
extended to measuring other types of correlation functions,
such as spin correlation functions in magnetic states as
realized in optical lattices or ion chains, and are often
carried out in a regime far beyond linear response, which
would be required to relate the measurement to theory
within Kubo formalism [1].
In this Letter, we demonstrate that a combination of

Ramsey interference experiments and single-site address-
ability available in ultracold atoms and ion chains can be
used to measure real-space and time-resolved spin corre-
lation functions; see Fig. 1 for an illustration of the

FIG. 1 (color online). Many-body Ramsey interferometry con-
sists of the following steps: (1) A spin system prepared in its
ground state is locally excited by �=2 rotation; (2) the system
evolves in time; (3) a global �=2 rotation is applied, followed by
the measurement of the spin state. This protocol provides the
dynamic many-body Green’s function.
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protocol. This is in contrast to established condensed mat-
ter probes, which generally measure response functions in
the frequency and wave vector domain. In principle, the
two quantities are connected by Fourier transform, but the
limited bandwidth of experiments renders a reliable map-
ping difficult in practice. We further discuss experimental
limitations such as slow magnetic field fluctuations and
show that global spin echo can be used to cancel these
fluctuations.

Many-body Ramsey interference.—We consider a
spin-1=2 system and introduce Pauli matrices �a

j for every

site j with a 2 fx; y; zg. At this point we do not make any
assumptions on the specific form of the spin Hamiltonian.
Examples will be given below. The internal states j#iz and
j"iz of a single site j can be controlled by Rabi pulses
which are of the general form [10,11]

Rjð�;�Þ ¼ 1̂ cos
�

2
þ ið�x

j cos�� �y
j sin�Þ sin�

2
; (2)

where � ¼ �� with the Rabi frequency � and the pulse
duration � and � is the phase of the laser field. For the
many-body Ramsey interference we consider spin rota-
tions with � ¼ �=2 but � arbitrary.

The many-body Ramsey protocol consists of four steps;
see Fig. 1 for the first three of them: (1) perform a local
�=2 rotation R1

i
:¼ Rið�=2; �1Þ on site i; (2) evolve the

system in time for a duration t; (3) perform a global (or
local) �=2 spin rotation R2 :¼ Q

jRjð�=2; �2Þ; and

(4) measure �z on site j. The final measurement is destruc-
tive but can be carried out in parallel on all sites.

The result of this procedure, after repetition over many
experimental runs, corresponds to the expectation value

Mijð�1;�2;tÞ¼
X

n

e��En

Z
hnjRy

i ð�1ÞeiĤtRyð�2Þ�z
jRð�2Þe�iĤtRið�1Þjni:

(3)

With some algebra we obtain [12]

Mijð�1;�2; tÞ ¼ 1
2ðcos�1 sin�2G

xx;�
ij þ cos�1 cos�2G

xy;�
ij

� sin�1 sin�2G
yx;�
ij � sin�1 cos�2G

yy;�
ij Þ

þ terms with an odd number of �x;y operators; (4)

where Gab;�
ij is the retarded, commutator Green’s function

defined in Eq. (1) with A ¼ �a
i and B ¼ �b

j .

In many physically relevant models, terms with an odd
number of � operators vanish by symmetry or at least can
be removed by an appropriate choice of the phases �1 and
�2 of the laser fields. We show below when using these
properties that in cases of both the Heisenberg model,
Eq. (6), and the long-range, transverse field Ising model,
Eq. (9), our Ramsey interference sequence measures a
combination of retarded correlation functions

Mijð�1; �2; tÞ ¼ 1

4
fsinð�1 þ�2ÞðGxx;�

ij �Gyy;�
ij Þ

� sinð�1 ��2ÞðGxx;�
ij þGyy;�

ij Þ
þ cosð�1 þ�2ÞðGxy;�

ij þGyx;�
ij Þ

þ cosð�1 ��2ÞðGxy;�
ij �Gyx;�

ij Þg: (5)

Alternatively to the many-body Ramsey protocol, a
spin-shelving technique can be used to measure dynamic
spin correlations along the quantization direction; i.e., the
operators A and B in (1) are�z

i and�
z
j, respectively [12]. In

Supplemental Material [12], we also derive a useful rela-
tion between Green’s functions and the Loschmidt echo
and discuss that it can be used to characterize diffusive and
localized many-body phases.
Heisenberg model.—The anisotropic Heisenberg model

of the XXZ type can be realized both with two-component
mixtures [13–18] and with polar molecules [21–23] in
optical lattices

Ĥ Heis ¼
X

i<j

J?ij ð�x
i �

x
j þ �y

i �
y
jÞ þ Jzij�

z
i�

z
j: (6)

For two-component Bose mixtures, interactions can be
mediated through the superexchange mechanism, and J?ij
and Jzij are functions of the inter- and intraspecies scatter-

ing lengths, respectively, which are nonzero for i, j nearest
neighbors. When realizing the Heisenberg model with
polar molecules, J?ij and Jzij are long ranged and aniso-

tropic in space. Hamiltonian (6) is introduced for arbitrary
dimension and the site index i is understood as a collective
index. We assume that the system is prepared in equilib-
rium at finite temperature; i.e., it has a density matrix given

by � ¼ Z�1e��ĤHeis .
Hamiltonian (6) has the global symmetry �x ! ��x,

�y ! ��y, and �z ! �z, from which it is obvious that
expectation values with an odd number of �x;y vanish. In
addition, Hamiltonian (6) has a U(1) symmetry of spin
rotations around the z axis. This symmetry requires that

(a) (b)

FIG. 2 (color online). Real-space and time-resolved Green’s
function Gxx;�

ij of the two-dimensional, isotropic Heisenberg

model, which can be measured with many-body Ramsey inter-
ferometry, shown for different temperatures T. The antiferro-
magnetic correlations manifest themselves in the opposite phase
of on-site (a) and nearest-neighbor (b) correlations. The inset in
(a) shows the decay of the peaks in Gxx;�

ii on a double logarith-

mic scale. See the main text for details.
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Gxx
ij �Gyy

ij ¼ 0 and Gxy
ij þGyx

ij ¼ 0:

Hence, the many-body Ramsey protocol (5) measures

Mijð�1; �2; tÞ ¼ � 1

4
fsinð�1 ��2ÞðGxx

ij þGyy
ij Þ

� cosð�1 ��2ÞðGxy
ij �Gyx

ij Þg: (7)

The choice of the phases �1 and �2 of the laser fields
determines which combination of Green’s functions is
obtained.

In case the two spin states are not encoded in magnetic-
field-insensitive states, one may also need to take into
account fluctuating magnetic fields for a realistic measure-
ment scenario. Such a contribution is described by a

Zeeman term ĤZ ¼ hz
P

i�
z
i . A spin-echo sequence, how-

ever, which augments the Ramsey protocol with a global �
rotation R� after half of the time evolution, removes slow
fluctuations in the Zeeman field

Rð�2Þe�iðĤHeisþĤZÞðt=2ÞR�e�iðĤHeisþĤZÞðt=2ÞRið�1Þ
! ~Rð�2Þe�iĤHeistRið�1Þ; (8)

where ~Rð�2Þ ¼ iRð�2Þðcos��

Q
l�

x
l � sin��

Q
l�

y
l Þ and

�� is the phase of the laser field in the course of the �
rotation. We show in Ref. [12] that this transformation still
allows one to measure dynamic correlation functions.

Figure 2 shows the time-resolved, local (a) and nearest-
neighbor (b) Green’s function of the antiferromagnetic
Heisenberg model (J?ij ¼ Jzij ¼: J for i, j 2 nearest neigh-

bors and J?ij ¼ Jzij ¼ 0 otherwise) for different tempera-

tures. We obtain the results by using a large-N expansion in
Schwinger-Boson representation [24–26], which has been
demonstrated to give reasonable results for the two-
dimensional spin-1=2 Heisenberg antiferromagnet [27].
The local and nearest-neighbor, dynamic Green’s functions
show clear signatures of antiferromagnetic order, since their
oscillations are out of phase. When lowering the tempera-
ture, the emergence of quantum coherence manifests
through the increase in the amplitude of the oscillations.
Furthermore, the decay of the oscillations [inset in (a)]
follows at low temperatures a power law over several dec-
ades in time, which indicates the approach to criticality. The
power law, however, is cut off by the finite correlation time
log�� J=T. Dynamic correlations at the antiferromagnetic
ordering wave vector ~� :¼ ð�;�Þ are a precursor of long-
range order [12] which in two dimensions emerges at zero
temperature. These correlations can be obtained from the
spatial ones by summing up contributions of one sublattice
with positive sign and of the other with negative sign.

Long-range, transverse field Ising model.—Systems of
trapped ions are capable of simulating canonical quantum
spin models, where two internal states of the ions serve as
effective spin states and the interaction between spins is
mediated by collective vibrations [28,29]. Among the
quantum spin models that can be simulated with trapped
ions is the long-range, transverse field Ising model

Ĥ Ising ¼ �X

i<j

Jij�
x
i �

x
j � h

X

i

�y
i ; (9)

where the spin-spin interactions fall off approximately as a
power law Jij ¼ J=ji� jj� with exponent � and h is the

strength of the transverse field. In trapped ion systems,
power-law interactions can be engineered with an exponent
� that is highly tunable [28]. The upper limit of � is given
by the decay of dipolar interactions 0<�< 3; however,
the shorter ranged the interactions are, the slower the
overall time scales are, which in turn is challenging for
experiments.
Experimentally, the long-ranged Ising model has been

realized with ion chains for both FM J > 0 [30,31]
as well as antiferromagnetic J < 0 [32–38] coupling.
Theoretically, quantum spin systems with long-range inter-
actions that decay with arbitrary exponent � have rarely
been studied in the literature, and so far static properties
[39–42] and quantum quenches [43–45] have been
explored. This is why we discuss the one-dimensional,
ferromagnetic (J > 0), long-range, transverse-field Ising
model in greater detail and focus in particular on dynami-
cal correlation functions and on the quantum phase tran-
sition (QPT) from the FM to the PM phase, whose
universality is described by a continuous manifold of

(a) (b)

FIG. 3 (color online). Phase diagram (a) of the one-
dimensional, long-range, transverse field Ising model (9) in the
transverse field h, interaction exponent �, and temperature T
space. For �< 1 (hatched region), the system is thermodynami-
cally unstable. The solid, black line indicates the quantum
critical line, which separates the ferromagnetic (FM) and para-
magnetic (PM) phases. For �> 3 (dark gray region), the phase
transition is of the same universality class as the short-range
Ising transition; for �< 5=3 (light gray region), mean-field
analysis is exact [12]. At � ¼ 2 and h ¼ 0 (dashed lines), the
phase transition is of the Berezinskii-Kosterlitz-Thouless type
[56–59], which also extends to finite transverse field h [39].
Symbols which indicate the finite temperature transition corre-
spond to h ¼ 0, T ¼ 1:5262ð5ÞJ [60] and h ¼ J=2, T ¼
1:42ð1ÞJ [61], which is in agreement with our results obtained
with finite temperature Lanczos techniques [62,63]. (b) Critical
exponent 	xz of dynamic correlations Gxx;�

L=2;L=2ðtÞ obtained along

the critical line from the scaling of finite size systems, which are
realizable in current experiments (symbols) and exact results in
the thermodynamic limit (lines).
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critical exponents that can be tuned by the decay of the
interactions �; see Fig. 3(a) for the rich phase diagram.

The transverse field Ising model obeys the global sym-
metry �x ! ��x, �y ! �y, and �z ! ��z, and thus
only expectation values with an odd number of �x opera-
tors vanish in Eq. (5). However, when choosing the phases
�1 ¼ 0 and�2 ¼ �=2 it can be shown that the many-body
Ramsey protocol measures [12]

Mijð0; �=2; tÞ ¼ 1

2
Gxx;�

ij : (10)

We illustrate that insight into the many-body physics can
be obtained by studying systems which are currently
experimentally realizable. To this end, we solve systems
of up to 22 ions with exact diagonalization based on the
Lanczos technique [46] and calculate their dynamical
Green’s functions. As realized in experiments, we gener-
ally consider open boundary conditions. In Fig. 4(a), we
show dynamic Green’s functions Gxx;�

L=2;L=2 for the interac-

tion exponent � ¼ 2 in the FM and in the PM phase. The
time-resolved Green’s functions characterize the many-
body states: In the FM phase (h smaller than the critical
field hc that determines the QPT) the response in the
direction of the ferromagnet is small, which manifests in
Gxx;�

L=2;L=2 through small amplitude oscillations whose enve-

lope decays very slowly, whereas in the PM phase (h > hc)
the response is large, which in Gxx;�

L=2;L=2 manifests in oscil-

lations that initially have a large amplitude but decay
quickly in time.

The oscillations in the dynamic Green’s functions
contain information about the excitations in the system.
In particular, in the PM phase oscillations with a frequency
corresponding to the gap [2] are expected. In addition, the
spectrum is cut off due to the lattice, which gives rise to a
second energy scale present in both the PM and the FM

phase. In Fig. 4(b), we show the frequency components
extracted from the Fourier transform of Gxx;�

L=2;L=2ðtÞ with
error bars given by the resolution in frequency space for
both short-ranged interactions (1=� ¼ 0, squares) and
long-ranged interactions (1=� ¼ 1=2, circles). For short-
range interactions 1=� ¼ 0, the gap can be evaluated
analytically � ¼ 2jh� Jj [2], which grows linearly with
the transverse field as indicated by the solid red (dark) line
in Fig. 4(b). The upper band edge at�þ 4J is indicated by
the dashed red (dark) line. At the critical point hc ¼ J, the
gap closes; however, oscillations from the finite bandwidth
are still present. For long-ranged interactions, we extract
the excitation gap and the bandwidth numerically. Results
are shown by blue (light) solid and dashed lines, respec-
tively. The upper band edge [blue (light) dashed line]
almost coincides with the short-range system. The gap
and the upper band edge are in good agreement with the
frequency components extracted from the correlation
functions.
Along the quantum critical line h ¼ hcð�Þ, which can be

determined experimentally by measuring, for example, the
Binder ratio [47], the system becomes scale invariant, and
thus spatial and temporal correlations decay as power laws
[see Fig. 3(b)]. In Ref. [12], we show in detail that a change
in the critical exponents should be observable in current
experiments already with a medium number of ions.
Conclusions and outlook.—In summary, we proposed a

protocol to measure real-space and time-resolved spin
correlation functions by using many-body Ramsey inter-
ference. We discuss the protocol for two relevant examples
of the Heisenberg and the long-range transverse field Ising
model, which can be experimentally realized with cold
atoms, polar molecules, and trapped ions. In this work
we focused on spin-1=2 systems. However, the proposed
protocol can be generalized to higher-spin systems when
realizing the Rabi pulses (2) with the respective higher-
spin operators. In order to implement the generalized spin
rotations, spin states should be encoded in internal atomic
states with isotropic energy spacing which can be simul-
taneously addressed by Rabi pulses.
The measurement of the time-dependent Green’s func-

tions provides important information on many-body exci-
tations and on quantum phase transitions where they
exhibit specific scaling laws. Having such tools at hand
makes it possible to explore fundamental, theoretically
much debated many-body phenomena. In particular, we
believe that the many-body localization transition [48–50]
and many-body localized phases, which are characterized
by a dephasing time that grows exponentially with the
distance between two particles in the sample [51–53],
can be explored by using the ideas described in this work.
Another question is whether the many-body Ramsey

protocol can be applied to systems out of equilibrium.
The protocol we propose is based on discrete symmetries
of many-body eigenstates and thus holds for ensembles
described by diagonal density matrices, while a generic

(a) (b)

FIG. 4 (color online). Dynamic Green’s function Gxx;�
L=2;L=2ðtÞ

(a) of the long-range, transverse field Ising model (9) for
interaction exponent � ¼ 2 in the ferromagnetic (h ¼ J) and
in the paramagnetic (h ¼ 6J) phases; see the legend. (b)
Oscillation frequencies (symbols) in Gxx;�

L=2;L=2ðtÞ obtained from

a Fourier transform of the time-dependent data as a function of
the transverse field h for two different values of the interaction
exponent �. Error bars indicate the resolution of the Fourier
transform in frequency space. Solid lines illustrate the excitation
gap, and the dashed line the upper band edge, which defines the
oscillations contributing to the dynamic correlations.
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system out of equilibrium is characterized by a density
matrix which also contains off-diagonal elements.
However, if the off-diagonal elements dephase in time,
many-body Ramsey interferometry can be applied out of
equilibrium as well. This could, for example, also be the
case for integrable systems, which after fast dephasing are
described by a diagonal density matrix whose weights are
determined by the generalized Gibbs ensemble [54,55].
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T. Giamarchi, C. Gross, I. Bloch, and S. Kuhr, Nat.
Phys. 9, 235 (2013).

[17] D. Greif, T. Uehlinger, G. Jotzu, L. Tarruell, and T.
Esslinger, Science 340, 1307 (2013).

[18] The short-range, transverse field Ising model [19] as well
as frustrated classical magnetism [20] have also been
explored with cold atoms.

[19] J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P.M. Preiss, and
M. Greiner, Nature (London) 472, 307 (2011).
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